Suppr超能文献

对基因本体术语进行分组以改进对微阵列数据中基因集富集的评估。

Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.

作者信息

Lewin Alex, Grieve Ian C

机构信息

Department of Epidemiology and Public Health, Imperial College, Norfolk Place, London W2 1PG, UK.

出版信息

BMC Bioinformatics. 2006 Oct 3;7:426. doi: 10.1186/1471-2105-7-426.

Abstract

BACKGROUND

Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult.

RESULTS

We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms.

CONCLUSION

Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

摘要

背景

基因本体论(GO)术语常被用于评估微阵列实验的结果。最常见的做法是进行费舍尔精确检验,以找出在微阵列实验分析中被声明为差异表达的基因中过度富集的GO术语。然而,由于GO术语之间的高度依赖性,统计检验较为保守,且解释困难。

结果

我们建议对GO术语组而非单个术语进行检验,以提高统计功效,减少检验之间的依赖性并改善结果的解释。我们使用公开可用的软件包POSOC对术语进行分组。我们的方法发现了在差异表达基因中显著过度富集的GO术语组,而这些术语组在对单个GO术语进行费舍尔检验时并未被发现。

结论

对基因本体论术语进行分组可改善对微阵列数据的基因集富集情况的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f33e/1622761/1652ccddfa86/1471-2105-7-426-1.jpg

相似文献

1
Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.
BMC Bioinformatics. 2006 Oct 3;7:426. doi: 10.1186/1471-2105-7-426.
2
SEGS: search for enriched gene sets in microarray data.
J Biomed Inform. 2008 Aug;41(4):588-601. doi: 10.1016/j.jbi.2007.12.001. Epub 2007 Dec 15.
3
Enrichment or depletion of a GO category within a class of genes: which test?
Bioinformatics. 2007 Feb 15;23(4):401-7. doi: 10.1093/bioinformatics/btl633. Epub 2006 Dec 20.
4
Comparative analysis of gene sets in the Gene Ontology space under the multiple hypothesis testing framework.
Proc IEEE Comput Syst Bioinform Conf. 2004:425-35. doi: 10.1109/csb.2004.1332455.
6
Using GOstats to test gene lists for GO term association.
Bioinformatics. 2007 Jan 15;23(2):257-8. doi: 10.1093/bioinformatics/btl567. Epub 2006 Nov 10.
7
Amplification of the Gene Ontology annotation of Affymetrix probe sets.
BMC Bioinformatics. 2006 Mar 20;7:159. doi: 10.1186/1471-2105-7-159.
8
Ontologizer 2.0--a multifunctional tool for GO term enrichment analysis and data exploration.
Bioinformatics. 2008 Jul 15;24(14):1650-1. doi: 10.1093/bioinformatics/btn250. Epub 2008 May 29.
9
CellMontage: similar expression profile search server.
Bioinformatics. 2007 Nov 15;23(22):3103-4. doi: 10.1093/bioinformatics/btm462. Epub 2007 Sep 25.
10
Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data.
Bioinformatics. 2005 May 15;21(10):2424-9. doi: 10.1093/bioinformatics/bti367. Epub 2005 Mar 3.

引用本文的文献

2
Cerebrospinal fluid proteomic profiling of cognitively unimpaired individuals with suspected non-Alzheimer's disease pathophysiology.
Brain Commun. 2025 Jun 20;7(4):fcaf253. doi: 10.1093/braincomms/fcaf253. eCollection 2025.
3
CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease.
Alzheimers Dement. 2024 Sep;20(9):6205-6220. doi: 10.1002/alz.14103. Epub 2024 Jul 6.
4
Dissecting the Immune System through Gene Regulation.
Adv Exp Med Biol. 2024;1444:219-235. doi: 10.1007/978-981-99-9781-7_15.
7
The Pathway Coexpression Network: Revealing pathway relationships.
PLoS Comput Biol. 2018 Mar 19;14(3):e1006042. doi: 10.1371/journal.pcbi.1006042. eCollection 2018 Mar.
8
Classification of gene signatures for their information value and functional redundancy.
NPJ Syst Biol Appl. 2017 Dec 19;4:2. doi: 10.1038/s41540-017-0038-8. eCollection 2018.
9
Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes.
Gigascience. 2017 Oct 1;6(10):1-14. doi: 10.1093/gigascience/gix073.
10
Constellation Map: Downstream visualization and interpretation of gene set enrichment results.
F1000Res. 2015 Jun 24;4:167. doi: 10.12688/f1000research.6644.1. eCollection 2015.

本文引用的文献

2
Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.
Bioinformatics. 2006 Jul 1;22(13):1600-7. doi: 10.1093/bioinformatics/btl140. Epub 2006 Apr 10.
3
Bayesian modeling of differential gene expression.
Biometrics. 2006 Mar;62(1):1-9. doi: 10.1111/j.1541-0420.2005.00394.x.
4
Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data.
Nucleic Acids Res. 2005 Nov 10;33(20):e175. doi: 10.1093/nar/gni179.
5
Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats.
Physiol Genomics. 2005 Oct 17;23(2):192-205. doi: 10.1152/physiolgenomics.00112.2005. Epub 2005 Aug 23.
6
Ontological analysis of gene expression data: current tools, limitations, and open problems.
Bioinformatics. 2005 Sep 15;21(18):3587-95. doi: 10.1093/bioinformatics/bti565. Epub 2005 Jun 30.
7
CD36 is a sensor of diacylglycerides.
Nature. 2005 Feb 3;433(7025):523-7. doi: 10.1038/nature03253.
8
The gene ontology categorizer.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i169-77. doi: 10.1093/bioinformatics/bth921.
9
Bayesian integrated functional analysis of microarray data.
Bioinformatics. 2004 Nov 22;20(17):2943-53. doi: 10.1093/bioinformatics/bth338. Epub 2004 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验