Suppr超能文献

基于小波去噪和支持向量机的恒星光谱识别

[Stellar spectral recognition based on wavelet de-noising and SVM].

作者信息

Xing Fei, Guo Ping

机构信息

School of Information Science and Technology, Beijing Normal University, Beijing 100875, China.

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2006 Jul;26(7):1368-72.

Abstract

The present paper describes a new technique for stellar spectral recognition. Considering the characteristics of stellar spectral data, support vector machine (SVM) was adopted to build a recognition system as kernel. Because stellar spectral data sets are usually extremely noisy, the correct classification rate of direct applying SVM is low. Consequently, wavelet de-noising method was proposed to reduce noise first and extract the main characteristics of stellar spectra. Then SVM was used for the recognition. Based on the real-world stellar spectra contributed by Jacoby et al. (1984), it has proven that there will be a better performance using this composite classifier which combines wavelet and SVM than using SVM with principle component analysis data dimension reduction technique. From the experiment of comparison of discriminant analysis and SVM based on stellar spectra for evolutionary synthesis, we can see that the correct classification rate of SVM is higher than that of discriminant analysis methods, and a well generalization ability is achieved.

摘要

本文描述了一种用于恒星光谱识别的新技术。考虑到恒星光谱数据的特征,采用支持向量机(SVM)构建了一个以其为内核的识别系统。由于恒星光谱数据集通常噪声极大,直接应用支持向量机的正确分类率较低。因此,提出了小波去噪方法来首先降低噪声并提取恒星光谱的主要特征。然后使用支持向量机进行识别。基于雅各比等人(1984年)提供的真实世界恒星光谱,已证明使用这种结合了小波和支持向量机的复合分类器比使用带有主成分分析数据降维技术的支持向量机具有更好的性能。从基于恒星光谱进行演化合成的判别分析与支持向量机的比较实验中可以看出,支持向量机的正确分类率高于判别分析方法,并且实现了良好的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验