Suppr超能文献

基于小波特征的模糊支持向量机用于脑电信号分类

Fuzzy support vector machine for classification of EEG signals using wavelet-based features.

作者信息

Xu Qi, Zhou Hui, Wang Yongji, Huang Jian

机构信息

Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.

出版信息

Med Eng Phys. 2009 Sep;31(7):858-65. doi: 10.1016/j.medengphy.2009.04.005. Epub 2009 May 31.

Abstract

Translation of electroencephalographic (EEG) recordings into control signals for brain-computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes the application of a fuzzy support vector machine (FSVM) with a radial basis function kernel for classifying motor imagery tasks, while the statistical features over the set of the wavelet coefficients were extracted to characterize the time-frequency distribution of EEG signals. In the proposed FSVM classifier, a low fraction of support vectors was used as a criterion for choosing the kernel parameter and the trade-off parameter, together with the membership parameter based solely on training data. FSVM and support vector machine (SVM) classifiers outperformed the winner of the BCI Competition 2003 and other similar studies on the same Graz dataset, in terms of the competition criterion of the mutual information (MI), while the FSVM classifier yielded a better performance than the SVM approach. FSVM and SVM classifiers perform much better than the winner of the BCI Competition 2005 on the same Graz dataset for the subject O3 according to the competition criterion of the maximal MI steepness, while the FSVM classifier outperforms the SVM method. The proposed FSVM model has potential in reducing the effects of noise or outliers in the online classification of EEG signals in BCIs.

摘要

将脑电图(EEG)记录转换为脑机接口(BCI)系统的控制信号需要基于对各种类型信息的稳健分类。基于EEG的BCI特征通常存在噪声,并且可能包含异常值。本文描述了一种具有径向基函数核的模糊支持向量机(FSVM)在运动想象任务分类中的应用,同时提取小波系数集上的统计特征来表征EEG信号的时频分布。在所提出的FSVM分类器中,仅基于训练数据,使用低比例的支持向量作为选择核参数、权衡参数以及隶属度参数的标准。在互信息(MI)的竞争标准方面,FSVM和支持向量机(SVM)分类器在相同的格拉茨数据集上优于2003年BCI竞赛的获胜者以及其他类似研究,而FSVM分类器的性能优于SVM方法。根据最大MI陡度的竞争标准,在相同的格拉茨数据集上,对于受试者O3,FSVM和SVM分类器的表现比2005年BCI竞赛的获胜者要好得多,而FSVM分类器优于SVM方法。所提出的FSVM模型在减少BCI中EEG信号在线分类中的噪声或异常值影响方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验