Suppr超能文献

从感染灰霉病的葡萄中分离出的梅奇酵母菌株通过耗尽铁来抑制真菌和细菌的生长。

Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion.

作者信息

Sipiczki Matthias

机构信息

Department of Genetics, University of Debrecen, PO Box 56, H-4010 Debrecen, Hungary.

出版信息

Appl Environ Microbiol. 2006 Oct;72(10):6716-24. doi: 10.1128/AEM.01275-06. Epub 2006 Aug 21.

Abstract

Noble-rotted grapes are colonized by complex microbial populations. I isolated pigment-producing Metschnikowia strains from noble-rotted grapes that had antagonistic activity against filamentous fungi, yeasts, and bacteria. A red-maroon pigment was formed from a diffusible colorless precursor released by the cells into the medium. The conversion of the precursor required iron and could occur both in the cells (red colonies) and in the medium (red halos around colonies). The intensity of pigmentation was correlated with the intensity of the antimicrobial activity. Mutants that did not form pigment also lacked antifungal activity. Within the pigmented halos, conidia of the sensitive fungi did not germinate, and their hyphae did not grow and frequently lysed at the tips. Supplementation of the medium with iron reduced the size of the halos and the inhibition zones, while it increased the pigment accumulation by the colonies. The iron-binding agent tropolone had a similar effect, so I hypothesize that pigmented Metschnikowia isolates inhibit the growth of the sensitive microorganisms by pigment formation, which depletes the free iron in the medium. As the pigment is a large nondiffusible complex produced in the presence of both low and high concentrations of ferric ions, the proposed mechanism is different from the mechanisms operating in microbes that release siderophores into the environment for iron acquisition.

摘要

贵腐葡萄被复杂的微生物群落定殖。我从贵腐葡萄中分离出了产色素的梅奇酵母菌株,这些菌株对丝状真菌、酵母和细菌具有拮抗活性。一种红棕色色素由细胞释放到培养基中的可扩散无色前体形成。前体的转化需要铁,并且可以在细胞内(红色菌落)和培养基中(菌落周围的红色晕圈)发生。色素沉着的强度与抗菌活性的强度相关。不形成色素的突变体也缺乏抗真菌活性。在有色晕圈内,敏感真菌的分生孢子不萌发,其菌丝不生长,并且在尖端经常溶解。向培养基中添加铁会减小晕圈和抑制区的大小,同时增加菌落的色素积累。铁结合剂曲酸具有类似的效果,因此我推测有色的梅奇酵母分离株通过色素形成抑制敏感微生物的生长,色素形成会耗尽培养基中的游离铁。由于该色素是在低浓度和高浓度铁离子存在下产生的一种不可扩散的大分子复合物,所提出的机制不同于那些向环境中释放铁载体以获取铁的微生物所起作用的机制。

相似文献

1
Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion.
Appl Environ Microbiol. 2006 Oct;72(10):6716-24. doi: 10.1128/AEM.01275-06. Epub 2006 Aug 21.
3
Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots.
Syst Appl Microbiol. 2001 Nov;24(3):395-9. doi: 10.1078/0723-2020-00045.
4
and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism.
Microorganisms. 2020 Jul 12;8(7):1029. doi: 10.3390/microorganisms8071029.
5
Impact of antagonistic yeasts from wine grapes on growth and mycotoxin production by Alternaria alternata.
J Appl Microbiol. 2021 Aug;131(2):833-843. doi: 10.1111/jam.14996. Epub 2021 Mar 23.
6
Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
Int J Food Microbiol. 2020 Apr 16;319:108505. doi: 10.1016/j.ijfoodmicro.2019.108505. Epub 2019 Dec 29.
7
Metschnikowia viticola sp. nov., a new yeast species from grape.
Antonie Van Leeuwenhoek. 2005 Feb;87(2):155-60. doi: 10.1007/s10482-004-2842-6.
8
In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways.
Braz J Microbiol. 2020 Dec;51(4):1953-1964. doi: 10.1007/s42770-020-00357-3. Epub 2020 Aug 11.
9
The microbial ecology of wine grape berries.
Int J Food Microbiol. 2012 Feb 15;153(3):243-59. doi: 10.1016/j.ijfoodmicro.2011.11.025. Epub 2011 Dec 2.
10
Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes.
Int J Food Microbiol. 2018 Sep 20;281:36-46. doi: 10.1016/j.ijfoodmicro.2018.05.016. Epub 2018 May 18.

引用本文的文献

2
Metabolomic Insights into the Antimicrobial Effects of Yeast on Phytopathogens.
Molecules. 2025 Aug 4;30(15):3268. doi: 10.3390/molecules30153268.
5
Integrated Chemical and Biochemical Treatments to Produce Protein and Microbial Lipid Food Ingredients from Ryegrass.
ACS Sustain Chem Eng. 2025 Jun 13;13(25):9588-9598. doi: 10.1021/acssuschemeng.5c02288. eCollection 2025 Jun 30.
6
The iron chelator pulcherriminic acid mediates the light response in Bacillus subtilis biofilms.
Nat Commun. 2025 Jul 1;16(1):5446. doi: 10.1038/s41467-025-60560-4.

本文引用的文献

2
Pulcherrimin, The Pigment of Candida Pulcherrima.
Proc Natl Acad Sci U S A. 1953 Jul;39(7):583-93. doi: 10.1073/pnas.39.7.583.
4
Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina.
Int J Food Microbiol. 2005 Apr 1;99(3):237-43. doi: 10.1016/j.ijfoodmicro.2004.08.017.
6
Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears.
Int J Food Microbiol. 2004 Jun 15;93(3):297-304. doi: 10.1016/j.ijfoodmicro.2003.11.011.
7
State of the art and future prospects of the biological control of postharvest fruit diseases.
Int J Food Microbiol. 2004 Mar 1;91(2):185-94. doi: 10.1016/S0168-1605(03)00380-5.
8
Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines.
Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):2079-83. doi: 10.1099/ijs.0.02649-0.
9
The minisatellite MSB1, in the fungus Botrytis cinerea, probably mutates by slippage.
Mol Biol Evol. 1998 Nov;15(11):1524-31. doi: 10.1093/oxfordjournals.molbev.a025880.
10
Yeast diversity and persistence in botrytis-affected wine fermentations.
Appl Environ Microbiol. 2002 Oct;68(10):4884-93. doi: 10.1128/AEM.68.10.4884-4893.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验