Suppr超能文献

使用哈尔小波功率谱进行特征选择。

Feature selection using Haar wavelet power spectrum.

作者信息

Subramani Prabakaran, Sahu Rajendra, Verma Shekhar

机构信息

ABV-Indian Institute of Information Technology and Management, Gwalior, India.

出版信息

BMC Bioinformatics. 2006 Oct 5;7:432. doi: 10.1186/1471-2105-7-432.

Abstract

BACKGROUND

Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented signal processing domains are not probed much when other fields like image and video processing utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum in the problem of clustering and gene selection based on expression data in the context of disease classification and to propose a method based on Haar wavelet power spectrum.

RESULTS

Haar wavelet power spectra of genes were analysed and it was observed to be different in different diagnostic categories. This difference in trend and magnitude of the spectrum may be utilized in gene selection. Most of the genes selected by earlier complex methods were selected by the very simple present method. Each earlier works proved only few genes are quite enough to approach the classification problem 1. Hence the present method may be tried in conjunction with other classification methods. The technique was applied without removing the noise in data to validate the robustness of the method against the noise or outliers in the data. No special software or complex implementation is needed. The qualities of the genes selected by the present method were analysed through their gene expression data. Most of them were observed to be related to solve the classification issue since they were dominant in the diagnostic category of the dataset for which they were selected as features.

CONCLUSION

In the present paper, the problem of feature selection of microarray gene expression data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering and feature selection method useful for classification based on Haar wavelet power spectrum. Application of this technique in this area is novel, simple, and faster than other methods, fit for a wide range of data types. The results are encouraging and throw light into the possibility of using this technique for problem domains like disease classification, gene network identification and personalized drug design.

摘要

背景

在诸如使用微阵列进行疾病分类等复杂研究中,特征选择是一种克服“维度诅咒”的方法。该领域更多地使用统计方法。其中大多数方法并不适用于广泛的数据集。当图像和视频处理等其他领域很好地利用面向变换的信号处理领域时,这些领域在该领域的探索并不多。小波就是这样一种技术,它有潜力被用于特征选择方法。本文的目的是评估哈尔小波功率谱在疾病分类背景下基于表达数据的聚类和基因选择问题中的能力,并提出一种基于哈尔小波功率谱的方法。

结果

分析了基因的哈尔小波功率谱,发现其在不同诊断类别中有所不同。频谱趋势和幅度的这种差异可用于基因选择。许多早期复杂方法选择的基因也被这个非常简单的现有方法选中。每个早期研究都证明只需很少的基因就足以解决分类问题1。因此,可以将本方法与其他分类方法结合使用。该技术在不消除数据噪声的情况下应用,以验证该方法对数据中的噪声或异常值的鲁棒性。不需要特殊软件或复杂的实现。通过所选基因的基因表达数据分析了本方法所选基因的质量。观察到其中大多数与解决分类问题相关,因为它们在所选择作为特征的数据集的诊断类别中占主导地位。

结论

在本文中,考虑了微阵列基因表达数据的特征选择问题。我们分析了基因的小波功率谱,并提出了一种基于哈尔小波功率谱的、对分类有用的聚类和特征选择方法。该技术在这一领域的应用是新颖、简单且比其他方法更快的,适用于广泛的数据类型。结果令人鼓舞,并为将该技术用于疾病分类、基因网络识别和个性化药物设计等问题领域的可能性提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a7d/1618414/c480057a3fca/1471-2105-7-432-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验