Suppr超能文献

Dual kinase-mediated regulation of PITK by CaMKII and GSK3.

作者信息

Kwiek Nicole C, Thacker Drew F, Haystead Timothy A J

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham NC 27710, United States.

出版信息

Cell Signal. 2007 Mar;19(3):593-9. doi: 10.1016/j.cellsig.2006.08.009. Epub 2006 Aug 30.

Abstract

Phosphatase Interactor Targeting K protein (PITK) was previously identified as a novel PP1 targeting subunit implicated in modulating the phosphorylation of the transcriptional regulator heterogeneous nuclear ribonucleoprotein K (hnRNP K) [Kwiek NC, Thacker DF, Datto MB, Megosh HB, Haystead TA. Cell Signal 18 (10) (2006) 1769.]. Through the phosphorylation of PITK at S1013 and S1017 (residues that flank or reside within a PP1C-binding motif), the binding of the PP1 catalytic subunit to PITK, and subsequently the activity of the holoenzyme, are discretely controlled. Herein, we demonstrate that PITK phosphorylation at S1013 and S1017 also dictates the subcellular localization of the holoenzyme. Whereas both wildtype-and an S1013,1017D-PITK mutant displayed a speckled nuclear localization, a constitutively dephosphorylated form of PITK (S1013,1017A-PITK) resulted in a diffuse localization throughout the cell including the cytoplasm. Additionally, through the use of unbiased proteomics techniques, we provide evidence for a dual kinase-mediated regulation of the PITK holoenzyme whereby PITK phosphorylation at S1017 is catalyzed by calcium/calmodulin-dependent kinase II-delta (CaMKIIdelta), promoting the subsequent phosphorylation of S1013 by glycogen synthase kinase-3 (GSK3) in vitro. Taken together, our findings provide further insight into the regulation of PITK, PP1, and hnRNP K by reversible phosphorylation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验