Suppr超能文献

基因表达谱分析器和传统临床标志物用于预测绝经前乳腺癌患者辅助化疗后的远处复发情况。

Gene expression profilers and conventional clinical markers to predict distant recurrences for premenopausal breast cancer patients after adjuvant chemotherapy.

作者信息

Niméus-Malmström Emma, Ritz Cecilia, Edén Patrik, Johnsson Anders, Ohlsson Mattias, Strand Carina, Ostberg Görel, Fernö Mårten, Peterson Carsten

机构信息

Department of Oncology, Institute of Medical Sciences, University Hospital, Lund, Sweden.

出版信息

Eur J Cancer. 2006 Nov;42(16):2729-37. doi: 10.1016/j.ejca.2006.06.031. Epub 2006 Oct 4.

Abstract

A large proportion of breast cancer patients are treated with adjuvant chemotherapy after the primary operation, but some will recur in spite of this treatment. In order to achieve an improved and more individualised therapy, our knowledge in mechanisms for drug resistance needs to be increased. We have investigated to what extent cDNA microarray measurements could distinguish the likelihood of recurrences after adjuvant CMF (cyclophosphamide, methotrexate and 5-fluorouracil) treatment of premenopausal, lymph node positive breast cancer patients, and have also compared this with the corresponding performance when using conventional clinical variables. We tried several gene selection strategies, and built classifiers using the resulting gene lists. The best performing classifier with odds ratio (OR)=6.5 (95% confidence interval (CI)=1.4-62) did not outperform corresponding classifiers based on clinical variables. For the clinical variables, calibrated on the samples, either using all the clinical parameters or the Nottingham Prognostic Index (NPI) parameters, the areas under the receiver operating characteristics (ROC) curve were 0.78 and 0.79, respectively. The ORs at 90% sensitivity were 15 (95% CI=3.1-140) and 10 (95% CI=2.1-97), respectively. Our data have provided evidence for a comparable prediction of clinical outcome in CMF-treated breast cancer patients using conventional clinical variables and gene expression based markers.

摘要

大部分乳腺癌患者在初次手术后接受辅助化疗,但尽管进行了这种治疗,仍有一些患者会复发。为了实现改进的、更个体化的治疗,我们需要增加对耐药机制的了解。我们研究了cDNA微阵列测量在多大程度上能够区分绝经前、淋巴结阳性乳腺癌患者接受辅助CMF(环磷酰胺、甲氨蝶呤和5-氟尿嘧啶)治疗后复发的可能性,并将其与使用传统临床变量时的相应表现进行了比较。我们尝试了几种基因选择策略,并使用所得基因列表构建分类器。表现最佳的分类器的优势比(OR)=6.5(95%置信区间(CI)=1.4-62),其表现并不优于基于临床变量的相应分类器。对于根据样本校准的临床变量,无论是使用所有临床参数还是诺丁汉预后指数(NPI)参数,受试者操作特征(ROC)曲线下的面积分别为0.78和0.79。在90%灵敏度下的OR分别为15(95%CI=3.1-140)和10(95%CI=2.1-97)。我们的数据为使用传统临床变量和基于基因表达的标志物对接受CMF治疗的乳腺癌患者的临床结局进行可比预测提供了证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验