Suppr超能文献

通过纵向基因表达预测患者生存率。

Predicting patient survival from longitudinal gene expression.

作者信息

Zhang Yuping, Tibshirani Robert J, Davis Ronald W

机构信息

Stanford University, USA.

出版信息

Stat Appl Genet Mol Biol. 2010;9(1):Article41. doi: 10.2202/1544-6115.1617. Epub 2010 Nov 22.

Abstract

Characterizing dynamic gene expression pattern and predicting patient outcome is now significant and will be of more interest in the future with large scale clinical investigation of microarrays. However, there is currently no method that has been developed for prediction of patient outcome using longitudinal gene expression, where gene expression of patients is being monitored across time. Here, we propose a novel prediction approach for patient survival time that makes use of time course structure of gene expression. This method is applied to a burn study. The genes involved in the final predictors are enriched in the inflammatory response and immune system related pathways. Moreover, our method is consistently better than prediction methods using individual time point gene expression or simply pooling gene expression from each time point.

摘要

表征动态基因表达模式并预测患者预后目前具有重要意义,并且随着微阵列的大规模临床研究,未来将更受关注。然而,目前还没有开发出利用纵向基因表达来预测患者预后的方法,即对患者的基因表达随时间进行监测。在此,我们提出一种利用基因表达的时间进程结构来预测患者生存时间的新方法。该方法应用于一项烧伤研究。最终预测指标中涉及的基因在炎症反应和免疫系统相关通路中富集。此外,我们的方法始终优于使用单个时间点基因表达或简单汇集每个时间点基因表达的预测方法。

相似文献

1
Predicting patient survival from longitudinal gene expression.通过纵向基因表达预测患者生存率。
Stat Appl Genet Mol Biol. 2010;9(1):Article41. doi: 10.2202/1544-6115.1617. Epub 2010 Nov 22.
3
Classification of patients from time-course gene expression.基于时间进程基因表达的患者分类。
Biostatistics. 2013 Jan;14(1):87-98. doi: 10.1093/biostatistics/kxs027. Epub 2012 Aug 27.
6
Position-based clustering of microarray expression data.基于位置的微阵列表达数据聚类
Cold Spring Harb Protoc. 2009 Sep;2009(9):pdb.prot5280. doi: 10.1101/pdb.prot5280.
7
Gene expression analysis in burn wounds of rats.大鼠烧伤创面的基因表达分析
Am J Physiol Regul Integr Comp Physiol. 2002 Oct;283(4):R918-30. doi: 10.1152/ajpregu.00170.2002.
8
Microarrays: statistical methods for circadian rhythms.微阵列:昼夜节律的统计方法。
Methods Mol Biol. 2007;362:245-64. doi: 10.1007/978-1-59745-257-1_17.
9
The analysis of microarray data.微阵列数据的分析。
Pharmacogenomics. 2003 Jul;4(4):477-97. doi: 10.1517/phgs.4.4.477.22744.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验