Spudich J L
Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA.
Biophys Chem. 1995 Sep-Oct;56(1-2):165-9. doi: 10.1016/0301-4622(95)00029-w.
Sensory rhodopsin I (SR-I lambda(max) 587 nm) is a phototaxis receptor in the archaeon Halobacterium salinarium. Photoisomerization of retinal in SR-I generates a long-lived intermediate with lambda(max) 373 nm which transmits a signal to the membrane-bound transducer protein HtrI. Although SR-I is structurally similar to the electrogenic proton pump bacteriorhodopsin (BR), early studies showed its photoreactions do not pump protons, nor result in membrane hyperpolarization. These studies used functionally active SR-I, that is, SR-I complexed with its transducer HtrI. Using recombinant DNA methods we have expressed SR-I protein containing mutations in ionizable residues near the protonated Schiff base, and studied wild-type and site-specifically mutated SR-I in the presence and absence of the transducer protein. UV-Vis kinetic absorption spectroscopy, FT-IR, and pH and membrane potential probes reveal transducer-free SR-I photoreactions result in vectorial proton translocation across the membrane in the same direction as that of BR. This proton pumping is suppressed by interaction with transducer which diverts the proton movements into an electroneutral path. A key step in this diversion is that transducer interaction raises the pK(a) of the aspartyl residue in SR-I (Asp76) which corresponds to the primary proton-accepting residue in the BR pump (Asp85). In transducer-free SR-I, our evidence indicates the pK(a) of Asp76 is 7.2, and ionized Asp76 functions as the Schiff base proton acceptor in the SR-I pump. In the SR-I/HtrI complex, the pK(a) of Asp76 is 8.5, and therefore at physiological pH (7.4) Asp76 is neutral. Protonation changes on Asp76 are clearly not required for signaling since the SR-I mutants D76N and D76A are active in phototaxis. The latent proton-translocation potential of SR-I may reflect the evolution of the SR-I sensory signaling mechanism from the proton pumping mechanism of BR.
感官视紫红质I(SR-I,λmax 587纳米)是嗜盐古菌盐生盐杆菌中的一种趋光性受体。SR-I中视黄醛的光异构化产生一个长寿命中间体,其λmax为373纳米,该中间体将信号传递给膜结合转导蛋白HtrI。尽管SR-I在结构上与生电质子泵细菌视紫红质(BR)相似,但早期研究表明其光反应既不泵出质子,也不会导致膜超极化。这些研究使用的是功能活跃的SR-I,即与其转导蛋白HtrI复合的SR-I。我们利用重组DNA方法表达了在质子化席夫碱附近可电离残基中含有突变的SR-I蛋白,并研究了在有和没有转导蛋白的情况下野生型和位点特异性突变的SR-I。紫外-可见动力学吸收光谱、傅里叶变换红外光谱以及pH和膜电位探针显示,无转导蛋白的SR-I光反应导致质子沿与BR相同的方向跨膜矢量转运。这种质子泵浦作用被与转导蛋白的相互作用所抑制,转导蛋白将质子运动转移到一条电中性路径。这种转移的关键步骤是转导蛋白的相互作用提高了SR-I中天冬氨酸残基(Asp76)的pKa,该残基对应于BR泵中的主要质子接受残基(Asp85)。在无转导蛋白的SR-I中,我们的证据表明Asp76的pKa为7.2,且电离的Asp76在SR-I泵中作为席夫碱质子受体发挥作用。在SR-I/HtrI复合物中,Asp76的pKa为8.5,因此在生理pH(7.4)下Asp76呈中性。由于SR-I突变体D76N和D76A在趋光性方面具有活性,所以Asp76上的质子化变化显然不是信号传导所必需的。SR-I潜在的质子转位潜力可能反映了SR-I感官信号传导机制从BR的质子泵浦机制的进化过程。