Suppr超能文献

古菌的生物能量学

Bioenergetics of the Archaea.

作者信息

Schäfer G, Engelhard M, Müller V

机构信息

Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.

出版信息

Microbiol Mol Biol Rev. 1999 Sep;63(3):570-620. doi: 10.1128/MMBR.63.3.570-620.1999.

Abstract

In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.

摘要

20世纪70年代末,基于核糖体RNA系统发育学,古菌(古细菌)被鉴定为除细菌(真细菌)和真核生物之外的一个独特的生命域。尽管古菌构成一个独立的域,但它们展现出了极其多样的生活方式和代谢能力。许多古菌物种适应了高盐度、接近水沸点的温度以及/或者极端碱性或酸性pH值的极端环境。这给研究这些生物体应对此类不利条件的分子和机制基础带来了挑战。本综述考虑了我们关于古菌主要能量守恒机制的累积知识,以及与细菌和真核生物能量守恒机制的关系。尽管化学渗透能量守恒的普遍原理也适用于古菌,但在新型离子转导、膜驻留蛋白复合物以及甲烷生成生物能量学中新型辅因子的使用方面发现了独特特征。从需氧呼吸的古菌中,可以分离并在功能上解析出不同寻常的电子传递超复合物,并且提出了关于古菌电子传递链组织的建议。基于最近原子尺度的结构信息,已经阐明了古菌视紫红质作为传感系统以及作为质子或氯离子泵的独特功能。虽然甲烷生成和嗜盐菌中光养能量转导的组分似乎是古菌特有的,但呼吸复合物和ATP合酶在进化起源方面表现出一些嵌合特征。然而,古菌ATP合酶应被视为这个二级能量转导家族的独特成员。未来研究的一个主要挑战是开发古菌遗传转化系统,以便能够研究生物能量系统的调控,并获得古菌膜蛋白的过量表达产物,这是其结晶的先决条件。

相似文献

1
Bioenergetics of the Archaea.古菌的生物能量学
Microbiol Mol Biol Rev. 1999 Sep;63(3):570-620. doi: 10.1128/MMBR.63.3.570-620.1999.
3
ATP synthases from archaea: the beauty of a molecular motor.古菌的ATP合酶:分子马达之美。
Biochim Biophys Acta. 2014 Jun;1837(6):940-52. doi: 10.1016/j.bbabio.2014.03.004. Epub 2014 Mar 17.
5
A bioenergetic basis for membrane divergence in archaea and bacteria.古菌和细菌中膜差异的生物能量基础。
PLoS Biol. 2014 Aug 12;12(8):e1001926. doi: 10.1371/journal.pbio.1001926. eCollection 2014 Aug.
6
Respiratory chains of archaea and extremophiles.古生菌和嗜极生物的呼吸链。
Biochim Biophys Acta. 1996 Jul 18;1275(1-2):16-20. doi: 10.1016/0005-2728(96)00043-6.
7
Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.古菌和细菌产氢代谢的生物能量学方面。
Adv Microb Physiol. 2019;74:487-514. doi: 10.1016/bs.ampbs.2019.02.005. Epub 2019 Feb 28.
10
Adaptations of anaerobic archaea to life under extreme energy limitation.极端能量限制下的厌氧古菌的适应。
FEMS Microbiol Rev. 2014 May;38(3):449-72. doi: 10.1111/1574-6976.12043. Epub 2013 Nov 5.

引用本文的文献

3
GTP before ATP: The energy currency at the origin of genes.ATP之前的GTP:基因起源时的能量货币。
Biochim Biophys Acta Bioenerg. 2025 Jan 1;1866(1):149514. doi: 10.1016/j.bbabio.2024.149514. Epub 2024 Sep 24.
4
An overview of ATP synthase, inhibitors, and their toxicity.三磷酸腺苷合酶、抑制剂及其毒性概述。
Heliyon. 2023 Nov 20;9(11):e22459. doi: 10.1016/j.heliyon.2023.e22459. eCollection 2023 Nov.
6
Light energy transduction in liposome-based artificial cells.基于脂质体的人工细胞中的光能转导。
Front Bioeng Biotechnol. 2023 Mar 29;11:1161730. doi: 10.3389/fbioe.2023.1161730. eCollection 2023.

本文引用的文献

1
Metabolism of hyperthermophiles.嗜热微生物的代谢。
World J Microbiol Biotechnol. 1995 Jan;11(1):26-57. doi: 10.1007/BF00339135.
4
Respiratory quinone composition of some acidophilic bacteria.一些嗜酸细菌的呼吸醌组成。
Syst Appl Microbiol. 1983;4(3):295-304. doi: 10.1016/S0723-2020(83)80016-2.
5
Molecular ecology of extremely halophilic Archaea and Bacteria.极端嗜盐古菌和细菌的分子生态学。
FEMS Microbiol Ecol. 2002 Jan 1;39(1):1-7. doi: 10.1111/j.1574-6941.2002.tb00900.x.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验