Struckmeier Jürgen, Redelbach Andreas
Gesellschaft für Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026209. doi: 10.1103/PhysRevE.74.026209. Epub 2006 Aug 21.
A different approach will be presented that aims to scrutinize the phase-space trajectories of a general class of Hamiltonian systems with regard to their regular or irregular behavior. The approach is based on the "energy-second-moment map" that can be constructed for all Hamiltonian systems of the generic form H=p(2)/2+V(q,t) . With a three-component vector s consisting of the system's energy h and second moments qp, q(2), this map linearly relates the vector s(t) at time t with the vector's initial state s(0) at t=0 . It will turn out that this map is directly obtained from the solution of a linear third-order equation that establishes an extension of the set of canonical equations. The Lyapunov functions of the energy-second-moment map will be shown to have simple analytical representations in terms of the solutions of this linear third-order equation. Applying Lyapunov's regularity analysis for linear systems, we will show that the Lyapunov functions of the energy-second-moment map yields information on the irregularity of the particular phase-space trajectory. Our results will be illustrated by means of numerical examples.
将提出一种不同的方法,旨在针对一般类别的哈密顿系统的相空间轨迹,研究其规则或不规则行为。该方法基于“能量二阶矩映射”,它可以为一般形式(H = p^{2}/2 + V(q,t))的所有哈密顿系统构建。通过由系统能量(h)和二阶矩(qp)、(q^{2})组成的三分量向量(s),此映射将时间(t)时的向量(s(t))与(t = 0)时向量的初始状态(s(0))线性关联起来。结果表明,该映射直接从一个线性三阶方程的解中获得,该方程建立了正则方程组的扩展。能量二阶矩映射的李雅普诺夫函数将被证明根据这个线性三阶方程的解具有简单的解析表示。应用线性系统的李雅普诺夫正则性分析,我们将表明能量二阶矩映射的李雅普诺夫函数产生关于特定相空间轨迹不规则性的信息。我们的结果将通过数值例子来说明。