Huynh A, Lanzillotti-Kimura N D, Jusserand B, Perrin B, Fainstein A, Pascual-Winter M F, Peronne E, Lemaître A
Institut des Nanosciences de Paris, CNRS, Universités Paris 6 et 7, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France.
Phys Rev Lett. 2006 Sep 15;97(11):115502. doi: 10.1103/PhysRevLett.97.115502. Epub 2006 Sep 13.
We report a direct determination of the dynamic behavior of confined acoustic phonons in nanocavities by picosecond acoustics. We provide the broadband, high resolution transmission amplitude curve in the subterahertz range, and we give evidence of resonant transmission peaks in three successive stop bands, in quantitative agreement with acoustic simulations. We furthermore demonstrate transit times in the nanosecond range at the cavity peaks reflecting the strong confinement of resonant phonons within the cavity layer. On the other hand, picosecond transit times are measured in the stop band, shorter than in any of the constituting materials, a tunneling effect well known both in photonic crystals and in macroscopic phononic systems.
我们报告了通过皮秒声学直接测定纳米腔中受限声子的动态行为。我们给出了亚太赫兹范围内的宽带、高分辨率传输幅度曲线,并提供了三个连续阻带中共振传输峰的证据,这与声学模拟在定量上是一致的。我们还证明了在腔峰处纳秒范围内的渡越时间,这反映了共振声子在腔层内的强限制。另一方面,在阻带中测量到皮秒级的渡越时间,比任何组成材料中的都短,这是光子晶体和宏观声子系统中都熟知的隧穿效应。