Suppr超能文献

WSe 声学纳米腔中增强的光子 - 声子相互作用。

Enhanced Photon-Phonon Interaction in WSe Acoustic Nanocavities.

作者信息

Carr Alex D, Ruppert Claudia, Samusev Anton K, Magnabosco Giulia, Vogel Nicolas, Linnik Tetiana L, Rushforth Andrew W, Bayer Manfred, Scherbakov Alexey V, Akimov Andrey V

机构信息

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.

出版信息

ACS Photonics. 2024 Mar 7;11(3):1147-1155. doi: 10.1021/acsphotonics.3c01601. eCollection 2024 Mar 20.

Abstract

Acoustic nanocavities (ANCs) with resonance frequencies much above 1 GHz are prospective to be exploited in sensors and quantum operating devices. Nowadays, acoustic nanocavities fabricated from van der Waals (vdW) nanolayers allow them to exhibit resonance frequencies of the breathing acoustic mode up to ∼ 1 THz and quality factors up to ∼ 10. For such high acoustic frequencies, electrical methods fail, and optical techniques are used for the generation and detection of coherent phonons. Here, we study experimentally acoustic nanocavities fabricated from WSe layers with thicknesses from 8 up to 130 nm deposited onto silica colloidal crystals. The substrate provides a strong mechanical support for the layers while keeping their acoustic properties the same as in membranes. We concentrate on experimental and theoretical studies of the amplitude of the optically measured acoustic signal from the breathing mode, which is the most important characteristic for acousto-optical devices. We probe the acoustic signal optically with a single wavelength in the vicinity of the exciton resonance and measure the relative changes in the reflectivity induced by coherent phonons up to 3 × 10 for ∼ 100 GHz. We reveal the enhancement of photon-phonon interaction for a wide range of acoustic frequencies and show high sensitivity of the signal amplitude to the photoelastic constants governed by the deformation potential and dielectric function for photon energies near the exciton resonance. We also reveal a resonance in the photoelastic response (we call it photoelastic resonance) in the nanolayers with thickness close to the Bragg condition. The estimates show the capability of acoustic nanocavities with an exciton resonance for operations with high-frequency single phonons at an elevated temperature.

摘要

共振频率远高于1吉赫兹的声学纳米腔有望应用于传感器和量子操作设备。如今,由范德华(vdW)纳米层制造的声学纳米腔能够展现出高达约1太赫兹的呼吸声学模式共振频率以及高达约10的品质因数。对于如此高的声学频率,电学方法失效,因此采用光学技术来产生和检测相干声子。在此,我们对由沉积在二氧化硅胶体晶体上、厚度从8纳米到130纳米的WSe层制造的声学纳米腔进行了实验研究。该衬底为这些层提供了强大的机械支撑,同时保持其声学特性与在薄膜中的相同。我们专注于对来自呼吸模式的光学测量声学信号幅度的实验和理论研究,这是声光器件最重要的特性。我们在激子共振附近用单一波长对声学信号进行光学探测,并测量了由相干声子引起的反射率的相对变化,在约100吉赫兹时高达3×10。我们揭示了在很宽的声学频率范围内光子 - 声子相互作用的增强,并表明信号幅度对由激子共振附近光子能量的形变势和介电函数所控制的光弹常数具有高灵敏度。我们还在厚度接近布拉格条件的纳米层中揭示了光弹响应中的共振(我们称之为光弹共振)。估算结果表明,具有激子共振的声学纳米腔有能力在高温下对高频单声子进行操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验