Papandrew A B, Lucas M S, Stevens R, Halevy I, Fultz B, Hu M Y, Chow P, Cohen R E, Somayazulu M
Division of Engineering and Applied Science, MC 138-78, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2006 Aug 25;97(8):087202. doi: 10.1103/PhysRevLett.97.087202. Epub 2006 Aug 21.
Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS.
在21吉帕的压力和11开尔文的温度下,对成分Fe92Ni8的六方密堆积(hcp)相合金进行了同步辐射穆斯堡尔光谱(SMS)分析。密度泛函理论计算预测hcp铁和hcp铁镍合金都具有反铁磁性。对于hcp铁,这些计算预测不存在超精细磁场,这与先前的实验结果一致。然而,对于hcp铁镍合金,预测存在大量超精细磁场,但在SMS光谱中未观察到。提出了两种可能的解释。第一,广义梯度近似密度泛函中存在小但显著的误差,可能导致对反铁磁性hcp铁镍合金的磁序或超精细磁场的错误预测。或者,周期比核激发态寿命短得多的量子涨落会阻止通过SMS检测磁矩。