Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Sorbonne Université, 75005 Paris, France.
Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20280-20285. doi: 10.1073/pnas.1904575116. Epub 2019 Sep 23.
Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.
利用 X 射线发射光谱,我们发现直到 30-40 GPa 的高压铁相中存在可观的局域磁矩;然而,与之前的预测相反,用中子粉末衍射法在 1.8 K 以下探测不到磁有序。我们的第一性原理计算揭示了一种能量更低的“自旋向列”态。这种状态形成了反铁磁双层,其间由零自旋双层隔开,这使得六方密堆积晶格上固有的反铁磁各向异性完全弛豫。由于软夹层激发和与其他向列相的近简并性,磁双层可能在方向上无序。这种可能缺乏长程相关性与中子粉末衍射的零结果一致。无序的自旋向列态解决了高压铁中以前被认为相互矛盾的问题,并且可能是解释其令人困惑的超导性的关键。