Restrepo Juan G, Ott Edward, Hunt Brian R
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Lett. 2006 Sep 1;97(9):094102. doi: 10.1103/PhysRevLett.97.094102.
The largest eigenvalue of the adjacency matrix of networks is a key quantity determining several important dynamical processes on complex networks. Based on this fact, we present a quantitative, objective characterization of the dynamical importance of network nodes and links in terms of their effect on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be affected by degree-degree correlations and network community structure. We discuss how our characterization can be used to optimize techniques for controlling certain network dynamical processes and apply our results to real networks.
网络邻接矩阵的最大特征值是决定复杂网络上几个重要动力学过程的关键量。基于这一事实,我们根据网络节点和链路对最大特征值的影响,给出了网络节点和链路动力学重要性的定量、客观表征。我们展示了节点动力学重要性的表征如何受到度-度相关性和网络社区结构的影响。我们讨论了如何利用我们的表征来优化控制某些网络动力学过程的技术,并将我们的结果应用于实际网络。