Restrepo Juan G, Ott Edward, Hunt Brian R
Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056119. doi: 10.1103/PhysRevE.76.056119. Epub 2007 Nov 29.
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.
网络邻接矩阵的最大特征值在多个网络过程中起着重要作用(例如,振荡器的同步、有向网络上的渗流以及网络耦合系统平衡点的线性稳定性)。在本文中,我们针对邻接矩阵的最大特征值开发了近似方法,并讨论了这些近似方法之间的关系。利用对模拟网络进行的数值实验来检验我们的结果。