Suppr超能文献

Motor and reflex testing in GM1-gangliosidosis model mice.

作者信息

Ichinomiya Satoshi, Watanabe Hiroshi, Maruyama Kimiko, Toda Hiroko, Iwasaki Hiroyuki, Kurosawa Mieko, Matsuda Junichiro, Suzuki Yoshiyuki

机构信息

Graduate School, International University of Health and Welfare, Otawara, Japan.

出版信息

Brain Dev. 2007 May;29(4):210-6. doi: 10.1016/j.braindev.2006.08.014. Epub 2006 Oct 5.

Abstract

A large number of genetic disease model mice have been produced by genetic engineering. However, phenotypic analysis is not sufficient, particularly for brain dysfunction in neurogenetic diseases. We tried to develop a new assessment system mainly for motor and reflex functions in G(M1)-gangliosidosis model mice. Two genetically engineered model mouse strains were used for this study: the beta-galactosidase-deficient knockout mouse representing infantile G(M1)-gangliosidosis (severe form), and transgenic mouse representing juvenile G(M1)-gangliosidosis (mild form). We modified human child neurology techniques, and selected eleven tests for motor assessment and reflex testing. The test results were scored in four grades: 0 (normal), 1 (slightly abnormal), 2 (moderately abnormal), and 3 (severely abnormal). Both disease model mouse strains showed high scores even at the apparently pre-symptomatic stage of the disease, particularly with abnormal tail and hind limb postures. Individual and total test scores were well correlated with the progression of the disease. This method is simple, quick, and reproducible. The testing is sensitive enough to detect early neurological abnormalities, and will be useful for monitoring the natural clinical course and effect of therapeutic experiments in various neurogenetic disease model mice, such as chemical chaperone therapy for G(M1)-gangliosidosis model mice.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验