Suppr超能文献

Probing the role of microenvironment for microencapsulated Sacchromyces cerevisiae under osmotic stress.

作者信息

Sun Zhi-Jie, Lv Guo-Jun, Li Shuang-Yue, Xie Yu-Bing, Yu Wei-Ting, Wang W, Ma Xiao-Jun

机构信息

Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China.

出版信息

J Biotechnol. 2007 Jan 30;128(1):150-61. doi: 10.1016/j.jbiotec.2006.09.001. Epub 2006 Sep 16.

Abstract

Cell encapsulation opens a new avenue to the oral delivery of genetically engineered microorganism for therapeutic purpose. Osmotic stress is one of the universal chemical stress factors in the application of microencapsulation technology. In order to understand the effect and mechanism of the encapsulated microenvironment on protecting cells from hyper-osmotic stress, yeast cells of Saccharomyces cerevisiae Y800 were encapsulated in calcium alginate micro-gel beads (MB), alginate-chitosan-alginate (ACA) solid core microcapsules (SCM), and ACA liquid core microcapsules (LCM), respectively. The stress-induced intracellular components and enzyme activity including trehalose, glycerol and super oxide dismutase (SOD) were measured. Free cell culture was used as control. The survival of encapsulated cells and the cells released from MB, SCM and LCM after osmotic shock induced by NaCl solution (1, 2 and 3M) was evaluated. An analysis method was established to probe the effect of encapsulated microenvironment on the cell tolerance to osmotic stress. The results showed that LCM gave rise to the highest level of intracellular trehalose and glycerol, and SOD activity, as well as the highest survival rate of encapsulated cells or cells released from microcapsule. It was demonstrated that LCM was able to induce the highest stress response and stress tolerance of cells, which was adapted during culture, while SCM failed. The theoretical analysis revealed that it was the liquid alginate matrix in microcapsule that played a central role in domesticating the cells to adapt to hyper-osmotic stress. This finding provides a very useful guideline to cell encapsulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验