Lee Jaeyong, Kim Jinseog, Jung Sin-Ho
Department of Statistics, Seoul National University, Sillimdong Kwanakgu, Seoul 151-742, Korea.
Lifetime Data Anal. 2007 Mar;13(1):119-37. doi: 10.1007/s10985-006-9022-0.
We consider a Bayesian analysis method of paired survival data using a bivariate exponential model proposed by Moran (1967, Biometrika 54:385-394). Important features of Moran's model include that the marginal distributions are exponential and the range of the correlation coefficient is between 0 and 1. These contrast with the popular exponential model with gamma frailty. Despite these nice properties, statistical analysis with Moran's model has been hampered by lack of a closed form likelihood function. In this paper, we introduce a latent variable to circumvent the difficulty in the Bayesian computation. We also consider a model checking procedure using the predictive Bayesian P-value.
我们考虑一种使用Moran(1967年,《生物统计学》54:385 - 394)提出的双变量指数模型对配对生存数据进行贝叶斯分析的方法。Moran模型的重要特征包括边际分布是指数分布,且相关系数的范围在0到1之间。这些与具有伽马脆弱性的流行指数模型形成对比。尽管有这些良好的性质,但由于缺乏封闭形式的似然函数,对Moran模型进行统计分析受到了阻碍。在本文中,我们引入一个潜在变量来规避贝叶斯计算中的困难。我们还考虑使用预测贝叶斯P值的模型检验程序。