Shih J H, Louis T A
Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA.
Lifetime Data Anal. 1995;1(2):205-20. doi: 10.1007/BF00985771.
Proportional hazards frailty models use a random effect, so called frailty, to construct association for clustered failure time data. It is customary to assume that the random frailty follows a gamma distribution. In this paper, we propose a graphical method for assessing adequacy of the proportional hazards frailty models. In particular, we focus on the assessment of the gamma distribution assumption for the frailties. We calculate the average of the posterior expected frailties at several followup time points and compare it at these time points to 1, the known mean frailty. Large discrepancies indicate lack of fit. To aid in assessing the goodness of fit, we derive and estimate the standard error of the mean of the posterior expected frailties at each time point examined. We give an example to illustrate the proposed methodology and perform sensitivity analysis by simulations.
比例风险脆弱模型使用一种随机效应,即所谓的脆弱性,来构建聚类失效时间数据的关联。通常假设随机脆弱性服从伽马分布。在本文中,我们提出一种用于评估比例风险脆弱模型充分性的图形方法。特别地,我们专注于对脆弱性的伽马分布假设进行评估。我们计算在几个随访时间点的后验期望脆弱性的平均值,并在这些时间点将其与已知的平均脆弱性1进行比较。较大差异表明拟合不足。为了帮助评估拟合优度,我们推导并估计在每个检查时间点的后验期望脆弱性均值的标准误差。我们给出一个例子来说明所提出的方法,并通过模拟进行敏感性分析。