Suppr超能文献

Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography.

作者信息

de Oliveira Paulo Tambasco, Zalzal Sylvia Francis, Beloti Marcio Mateus, Rosa Adalberto Luiz, Nanci Antonio

机构信息

Cell Culture Laboratory, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-904, Ribeirão Preto, São Paulo, Brazil.

出版信息

J Biomed Mater Res A. 2007 Mar 1;80(3):554-64. doi: 10.1002/jbm.a.30955.

Abstract

The surface characteristics of biomaterials can influence protein adsorption, cellular functions, and ultimately tissue formation. Controlled chemical oxidation of titanium-based surfaces with a mixture of H(2)SO(4)/H(2)O(2) creates a nanopatterned surface that has been shown to affect early osteogenic events. The objective of this study was to evaluate the effect over time of this nanopattern on various key parameters of osteogenesis, and determine whether these effects ultimately translate into more mineralized matrix production. Osteogenic cells were obtained by enzymatic digestion of newborn rat calvaria and grown on treated and untreated titanium discs for periods of up to 14 days. Alkaline phosphatase activity peaked earlier and cell number was higher as of day 7 on the nanopatterned discs. Immunofluorescence showed that the treated surface favored early bone sialoprotein and osteopontin secretion, and fibronectin accumulation. Alizarin red staining revealed that, at days 10 and 14, there were significantly more mineralized nodules on treated than on untreated discs. These results demonstrate that simple chemical treatment of titanium with H(2)SO(4)/H(2)O(2) accelerates the in vitro osteogenic potential of calvaria-derived cells. They also suggest that this treatment may represent an advantageous approach for producing "intelligent surfaces" that stimulate bone formation and enhance bone-implant contact.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验