Suppr超能文献

使用动态磁敏感对比增强灌注磁共振成像,比较从单室获得的灌注指标与药代动力学建模方法在不同胶质瘤分级中的应用。

Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade.

作者信息

Law M, Young R, Babb J, Rad M, Sasaki T, Zagzag D, Johnson G

机构信息

Department of Radiology, NYU Medical Center, New York, NY 10016, USA.

出版信息

AJNR Am J Neuroradiol. 2006 Oct;27(9):1975-82.

Abstract

BACKGROUND AND PURPOSE

Numerous different parameters measured by perfusion MR imaging can be used for characterizing gliomas. Parameters derived from 3 different analyses were correlated with histopathologically confirmed grade in gliomas to determine which parameters best predict tumor grade.

METHODS

Seventy-four patients with gliomas underwent dynamic susceptibility contrast-enhanced MR imaging (DSC MR imaging). Data were analyzed by 3 different algorithms. Analysis 1 estimated relative cerebral blood volume (rCBV) by using a single compartment model. Analysis 2 estimated fractional plasma volume (V(p)) and vascular transfer constant (K(trans)) by using a 2-compartment pharmacokinetic model. Analysis 3 estimated absolute cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) by using a single compartment model and an automated arterial input function. The Mann-Whitney U test was used make pairwise comparisons. Binary logistic regression was used to assess whether rCBV, V(p), K(trans), CBV, CBF, and MTT can discriminate high- from low-grade tumors.

RESULTS

rCBV was the best discriminator of tumor grade ype, followed by CBF, CBV, and K(trans). Spearman rank correlation factors were the following: rCBV = 0.812 (P < .0001), CBF = 0.677 (P < .0001), CBV = 0.604 (P < .0001), K(trans) = 0.457 (P < .0001), V(p) = 0.301 (P =.009), and MTT = 0.089 (P = .448). rCBV was the best single predictor, and K(trans) with rCBV was the best set of predictors of high-grade glioma.

CONCLUSION

rCBV, CBF, CBV K(trans), and V(p) measurements correlated well with histopathologic grade. rCBV was the best predictor of glioma grade, and the combination of rCBV with K(trans) was the best set of metrics to predict glioma grade.

摘要

背景与目的

灌注磁共振成像测量的众多不同参数可用于胶质瘤的特征描述。源自3种不同分析的参数与胶质瘤组织病理学确诊分级相关,以确定哪些参数能最佳预测肿瘤分级。

方法

74例胶质瘤患者接受了动态磁敏感对比增强磁共振成像(DSC-MRI)。数据采用3种不同算法进行分析。分析1使用单室模型估计相对脑血容量(rCBV)。分析2使用双室药代动力学模型估计血浆分数容积(V(p))和血管转运常数(K(trans))。分析3使用单室模型和自动动脉输入函数估计绝对脑血流量(CBF)、脑血容量(CBV)和平均通过时间(MTT)。采用曼-惠特尼U检验进行两两比较。二元逻辑回归用于评估rCBV、V(p)、K(trans)、CBV、CBF和MTT能否区分高级别与低级别肿瘤。

结果

rCBV是肿瘤分级类型的最佳判别指标,其次是CBF、CBV和K(trans)。Spearman等级相关系数如下:rCBV = 0.812(P <.0001),CBF = 0.677(P <.0001),CBV = 0.604(P <.0001),K(trans) = 0.457(P <.0001),V(p) = 0.301(P =.009),MTT = 0.089(P =.448)。rCBV是最佳的单一预测指标,K(trans)与rCBV组合是高级别胶质瘤的最佳预测指标集。

结论

rCBV、CBF、CBV、K(trans)和V(p)测量值与组织病理学分级相关性良好。rCBV是胶质瘤分级的最佳预测指标,rCBV与K(trans)的组合是预测胶质瘤分级的最佳指标集。

相似文献

6
Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method.
Eur J Radiol. 2014 Oct;83(10):1914-9. doi: 10.1016/j.ejrad.2014.07.002. Epub 2014 Jul 15.
7
Correlation of Tumor Immunohistochemistry with Dynamic Contrast-Enhanced and DSC-MRI Parameters in Patients with Gliomas.
AJNR Am J Neuroradiol. 2016 Dec;37(12):2217-2223. doi: 10.3174/ajnr.A4908. Epub 2016 Sep 1.

引用本文的文献

1
Differentiation between glioblastoma and solitary brain metastases using perfusion and amide proton transfer weighted MRI.
Front Neurosci. 2025 Feb 5;19:1533799. doi: 10.3389/fnins.2025.1533799. eCollection 2025.
4
The Role of Multimodal Imaging in Differentiating Vasogenic from Infiltrative Edema: A Systematic Review.
Indian J Radiol Imaging. 2023 Aug 21;33(4):514-521. doi: 10.1055/s-0043-1772466. eCollection 2023 Oct.
5
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading.
Cancers (Basel). 2022 Mar 10;14(6):1432. doi: 10.3390/cancers14061432.
9
10
Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour.
Eur Radiol. 2019 Apr;29(4):1986-1996. doi: 10.1007/s00330-018-5704-8. Epub 2018 Oct 12.

本文引用的文献

1
Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla.
J Magn Reson Imaging. 2005 Oct;22(4):475-82. doi: 10.1002/jmri.20415.
3
Comparative study of methods for determining vascular permeability and blood volume in human gliomas.
J Magn Reson Imaging. 2004 Nov;20(5):748-57. doi: 10.1002/jmri.20182.
9
Imaging of angiogenesis: from microscope to clinic.
Nat Med. 2003 Jun;9(6):713-25. doi: 10.1038/nm0603-713.
10
Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging.
Radiology. 2003 May;227(2):593-600. doi: 10.1148/radiol.2272020092. Epub 2003 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验