Blaesse Peter, Guillemin Isabelle, Schindler Jens, Schweizer Michaela, Delpire Eric, Khiroug Leonard, Friauf Eckhard, Nothwang Hans Gerd
Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, D-67653 Kaiserslautern, Germany.
J Neurosci. 2006 Oct 11;26(41):10407-19. doi: 10.1523/JNEUROSCI.3257-06.2006.
The neuron-specific K+-Cl- cotransporter KCC2 extrudes Cl- and renders GABA and glycine action hyperpolarizing. Thus, it plays a pivotal role in neuronal inhibition. Development-dependent KCC2 activation is regulated at the transcriptional level and by unknown posttranslational mechanisms. Here, we analyzed KCC2 activation at the protein level in the developing rat lateral superior olive (LSO), a prominent auditory brainstem structure. Electrophysiology demonstrated ineffective KCC2-mediated Cl- extrusion in LSO neurons at postnatal day 3 (P3). Immunohistochemical analyses by confocal and electron microscopy revealed KCC2 signals at the plasma membrane in the somata and dendrites of both immature and mature neurons. Biochemical analysis demonstrated mature glycosylation pattern of KCC2 at both stages. Immunoblot analysis of the immature brainstem demonstrated mainly monomeric KCC2. In contrast, three KCC2 oligomers with molecular masses of approximately 270, approximately 400, and approximately 500 kDa were identified in the mature brainstem. These oligomers were sensitive to sulfhydryl-reducing agents and resistant to SDS, contrary to the situation seen in the related Na+-(K+)-Cl- cotransporter. In HEK-293 cells, coexpressed hemagglutinin-tagged KCC2 assembled with histidine-tagged KCC2, demonstrating formation of homomers. Based on these findings, we conclude that the oligomers represent KCC2 dimers, trimers, and tetramers. Finally, immunoblot analysis identified a development-dependent increase in the oligomer/monomer ratio from embryonic day 18 to P30 throughout the brain that correlates with KCC2 activation. Together, our data indicate that the developmental shift from depolarization to hyperpolarization can be determined by both increased gene expression and KCC2 oligomerization.
神经元特异性钾氯协同转运体KCC2可排出氯离子,使γ-氨基丁酸(GABA)和甘氨酸的作用呈超极化。因此,它在神经元抑制中起关键作用。KCC2的发育依赖性激活在转录水平以及未知的翻译后机制的调控下进行。在此,我们分析了发育中的大鼠外侧上橄榄核(LSO,一种重要的听觉脑干结构)中KCC2在蛋白质水平的激活情况。电生理学研究表明,出生后第3天(P3)时,LSO神经元中KCC2介导的氯离子排出无效。共聚焦显微镜和电子显微镜的免疫组织化学分析显示,未成熟和成熟神经元的胞体和树突的质膜上均有KCC2信号。生化分析表明,两个阶段的KCC2均具有成熟的糖基化模式。对未成熟脑干的免疫印迹分析显示,主要为单体形式的KCC2。相比之下,在成熟脑干中鉴定出三种分子量分别约为270 kDa、约400 kDa和约500 kDa的KCC2寡聚体。与相关的钠钾氯协同转运体的情况相反,这些寡聚体对巯基还原剂敏感,对十二烷基硫酸钠(SDS)有抗性。在人胚肾293(HEK-293)细胞中,共表达的血凝素标记的KCC2与组氨酸标记的KCC2组装在一起,证明形成了同型寡聚体。基于这些发现,我们得出结论,这些寡聚体代表KCC2二聚体、三聚体和四聚体。最后,免疫印迹分析确定,从胚胎第18天到P30,整个大脑中寡聚体/单体比例呈发育依赖性增加,这与KCC2的激活相关。总之,我们的数据表明,从去极化到超极化的发育转变可由基因表达增加和KCC2寡聚化共同决定。