Mac Gabhann Feilim, Ji James W, Popel Aleksander S
Dept. of Biomedical Engineering, Johns Hopkins Univ. School of Medicine, 720 Rutland Ave., Baltimore, MD 2120, USA.
J Appl Physiol (1985). 2007 Feb;102(2):722-34. doi: 10.1152/japplphysiol.00800.2006. Epub 2006 Oct 12.
Extensive experimental studies have identified vascular endothelial growth factor (VEGF) concentrations and concentration gradients as major factors in angiogenesis; however, localized in vivo measurements of these parameters have not been possible. We developed a three-dimensional computational model of skeletal muscle fibers, blood vessels, and interstitial space. Here it is applied to rat extensor digitorum longus. VEGF isoforms are secreted by myocytes, diffuse through extracellular matrix and basement membranes, and bind endothelial cell surface receptors on blood vessels. In addition, one isoform, VEGF164, binds to proteoglycans in the interstitial space. VEGF secretion rate is determined from the predicted tissue oxygen level through its effect on the hypoxia inducible factor-1alpha transcription factor. We estimate VEGF secretion and its concentrations and gradients in resting muscle and for different levels of exercise. The effects of low levels of inspired oxygen are also studied. We predict that the high spatial heterogeneity of muscle fiber VEGF secretion in hypoxic tissue leads to significant gradients of VEGF concentration and VEGF receptor activation. VEGF concentration gradients are predicted to be significant in both resting and exercising muscle (4% and 6-8% change in VEGF over 10 microm, respectively), sufficient for chemotactic guidance of 50-microm-long sprout tip cells. VEGF gradients also result in heterogeneity in VEGF receptor activation--a possible explanation for the stochasticity of sprout location. In the absence of interstitial flow, gradients are 10-fold steeper in the transverse direction (i.e., perpendicular to the muscle fibers) than in the longitudinal direction. This may explain observed perpendicular anastomoses in skeletal muscle.
大量实验研究已确定血管内皮生长因子(VEGF)浓度和浓度梯度是血管生成的主要因素;然而,在体内对这些参数进行局部测量尚无可能。我们构建了一个包含骨骼肌纤维、血管和细胞间质空间的三维计算模型。在此将其应用于大鼠趾长伸肌。VEGF 亚型由肌细胞分泌,通过细胞外基质和基底膜扩散,并与血管内皮细胞表面受体结合。此外,一种亚型 VEGF164 与细胞间质中的蛋白聚糖结合。VEGF 分泌率通过其对缺氧诱导因子 -1α转录因子的影响,由预测的组织氧水平确定。我们估计了静息肌肉以及不同运动水平下的 VEGF 分泌及其浓度和梯度。还研究了低水平吸入氧的影响。我们预测,缺氧组织中肌纤维 VEGF 分泌的高度空间异质性会导致 VEGF 浓度和 VEGF 受体激活的显著梯度。预计在静息和运动肌肉中 VEGF 浓度梯度均很显著(在 10 微米范围内 VEGF 分别变化 4%和 6 - 8%),足以对 50 微米长的芽尖细胞进行趋化引导。VEGF 梯度还导致 VEGF 受体激活的异质性——这可能是芽位置随机性的一种解释。在没有间质流动的情况下,横向(即垂直于肌纤维)的梯度比纵向陡 10 倍。这可能解释了在骨骼肌中观察到的垂直吻合现象。