Merkofer Martin, Kissner Reinhard, Hider Robert C, Brunk Ulf T, Koppenol Willem H
Laboratorium für Anorganische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, CH-8093 Zürich, Switzerland.
Chem Res Toxicol. 2006 Oct;19(10):1263-9. doi: 10.1021/tx060101w.
The goal of iron-chelation therapy is to reduce the levels of labile plasma iron, and intravenously administered desferrioxamine is the gold standard of therapeutic agents. Hydroxypyridinones, e.g., CP20 (3-hydroxy-1,2-dimethylpyridin-4(1H)-one), are used or are under investigation as orally administered iron chelators. We determined electrode potentials of CP20, the related hydoxypyridones CP361, CP363, and CP502, and ICL670 (4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid) under physiologically relevant conditions to address the question of whether iron in the presence of these chelating agents can carry out Fenton chemistry in vivo. We found that iron(III) but not iron(II) binds tightly to both CP20 and ICL670 at pH 7 and higher, compared to nearly complete binding of 1 microM iron(II) to 10 microM desferrioxamine at pH 7.4 The electrode potentials of the hydroxypyridinones shift to more negative values with decreasing pK(a) values at lower concentrations of iron(III) (0.02 mM) and ligand (0.1 mM). The electrode potential of the iron-CP20 system decreases as a function of increasing pH, with a minimum near pH 10.5. We estimate an electrode potential for the ascorbyl radical/ascorbate couple under physiological conditions of +105 mV, which is higher than the electrode potential of the iron(III) complex of CP20 at all concentrations of iron. The rate of oxidation of iron(II) in the presence of CP20 by hydrogen peroxide increases with the concentrations of both ligand and peroxide. Although iron(II) is oxidized by hydrogen peroxide, the thus-formed Fe(III)(CP20)(3) complex cannot be reduced by ascorbate. Therefore, the tight binding of iron(III) by this class of chelators prevents redox cycling.
铁螯合疗法的目标是降低不稳定血浆铁的水平,静脉注射去铁胺是治疗药物的金标准。羟基吡啶酮类,如CP20(3-羟基-1,2-二甲基吡啶-4(1H)-酮),作为口服铁螯合剂正在使用或处于研究中。我们在生理相关条件下测定了CP20、相关的羟基吡啶酮CP361、CP363和CP502以及ICL670(4-[3,5-双(2-羟苯基)-1H-1,2,4-三唑-1-基]苯甲酸)的电极电位,以解决在这些螯合剂存在下铁是否能在体内进行芬顿化学反应的问题。我们发现,在pH 7及更高时,铁(III)而非铁(II)与CP20和ICL670紧密结合,相比之下,在pH 7.4时,1微摩尔铁(II)与10微摩尔去铁胺几乎完全结合。在较低浓度的铁(III)(0.02 mM)和配体(0.1 mM)下,羟基吡啶酮的电极电位随着pK(a)值的降低而向更负值移动。铁-CP20体系的电极电位随pH升高而降低,在pH 10.5附近达到最小值。我们估计在生理条件下抗坏血酸自由基/抗坏血酸电对的电极电位为+105 mV,这高于在所有铁浓度下CP20的铁(III)配合物的电极电位。在CP20存在下,过氧化氢氧化铁(II)的速率随配体和过氧化氢浓度的增加而增加。虽然铁(II)被过氧化氢氧化,但由此形成的Fe(III)(CP20)(3)配合物不能被抗坏血酸盐还原。因此,这类螯合剂对铁(III)的紧密结合阻止了氧化还原循环。