Suppr超能文献

铁与氧化还原循环。应该做的和不应该做的。

Iron and redox cycling. Do's and don'ts.

机构信息

Schwändibergstrasse 25, CH-8784 Braunwald, Switzerland; Emeritus, Department of Chemistry and Applied Biosciences, ETHZ, CH-8093 Zürich, Switzerland.

Department of Pharmacy, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.

出版信息

Free Radic Biol Med. 2019 Mar;133:3-10. doi: 10.1016/j.freeradbiomed.2018.09.022. Epub 2018 Sep 17.

Abstract

A major form of toxicity arises from the ability of iron to redox cycle, that is, to accept an electron from a reducing compound and to pass it on to HO (the Fenton reaction). In order to do so, iron must be suitably complexed to avoid formation of FeO. The ligands determine the electrode potential; this information should be known before experiments are carried out. Only one-electron transfer reactions are likely to be significant; thus two-electron potentials should not be used to determine whether an iron(III) complex can be reduced or oxidized. Ascorbate is the relevant reducing agent in blood serum, which means that iron toxicity in this compartment arises from the ascorbate-driven Fenton reaction. In the cytosol, an iron(II)-glutathione complex is likely to be the low-molecular weight iron complex involved in toxicity. When physiologically relevant concentrations are used the window of redox opportunity ranges from +0.1 V to +0.9 V. The electrode potential for non-transferrin-bound iron in the form of iron citrate is close to 0 V and the reduction of iron(III) citrate by ascorbate is slow. The clinically utilised chelators desferrioxamine, deferiprone and deferasirox in each case render iron complexes with large negative electrode potentials, thus being effective in preventing iron redox cycling and the associated toxicity resulting from such activity. There is still uncertainty about the product of the Fenton reaction, HO or FeO.

摘要

一种主要的毒性形式源于铁的氧化还原循环能力,即接受来自还原剂的电子并将其传递给 HO(芬顿反应)。为了做到这一点,铁必须适当配位以避免形成 FeO。配体决定电极电位;在进行实验之前,应该了解这些信息。只有单电子转移反应可能很重要;因此,不应使用双电子电位来确定铁(III)配合物是否可以被还原或氧化。抗坏血酸是血清中相关的还原剂,这意味着该部位的铁毒性源于抗坏血酸驱动的芬顿反应。在细胞质中,铁(II)-谷胱甘肽复合物可能是涉及毒性的低分子量铁复合物。当使用生理相关浓度时,氧化还原机会的窗口范围从+0.1 V 到+0.9 V。以柠檬酸铁形式存在的非转铁蛋白结合铁的电极电位接近 0 V,抗坏血酸还原柠檬酸铁的速度较慢。临床上使用的螯合剂去铁胺、地拉罗司和曲伐沙星在每种情况下都使铁复合物具有较大的负电极电位,从而有效地防止铁的氧化还原循环以及由此类活性引起的相关毒性。关于芬顿反应的产物 HO 或 FeO 仍然存在不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验