Suppr超能文献

关于细胞半胱氨酸来源及其与铁死亡可能关系的未解决问题。

Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis.

机构信息

Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary.

Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.

出版信息

Adv Cancer Res. 2024;162:1-44. doi: 10.1016/bs.acr.2024.04.001. Epub 2024 May 3.

Abstract

Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.

摘要

半胱氨酸是合成谷胱甘肽 (GSH)、辅酶 A、其他含硫代谢物和大多数蛋白质所必需的。在大多数细胞中,半胱氨酸来自包括胱氨酸、谷胱甘肽二硫化物和肽在内的细胞外二硫键源。硫氧还蛋白还原酶 1 (TrxR1) 或谷胱甘肽二硫化物还原酶 (GSR) 驱动的酶系统可以通过硫氧还蛋白、谷氧还蛋白或其他硫氧还蛋白折叠蛋白为胱氨酸还原提供动力。游离胱氨酸通过胱氨酸-谷氨酸反向转运体 xCT 进入细胞,但在全身范围内,血浆谷胱甘肽二硫化物可能作为胱氨酸的主要来源。抑制 xCT 和电压依赖性阴离子通道的 Erastin 诱导铁死亡细胞死亡,因此得名,因为这种类型的细胞死亡可以被铁螯合剂拮抗。许多癌细胞似乎容易发生铁死亡,这已被提议作为一种可靶向的癌症缺陷。铁死亡与脂质过氧化和谷胱甘肽过氧化物酶 4 (GPX4) 或铁死亡抑制蛋白 1 (FSP1) 的丧失有关,这两者都可以防止脂质过氧化物的积累。据认为,xCT 抑制诱导的细胞内半胱氨酸缺乏会降低 GSH 水平,使 GPX4 因缺乏还原能力而无法生存,并允许膜脂过氧化产物积累,从而导致铁死亡。然而,铁死亡的某些方面尚未完全理解,需要进一步研究,例如在动物模型中,破坏 GSH 合成、丧失 GSH 或破坏谷胱甘肽二硫化物还原酶 (GSR) 都不会引发铁死亡。在这里,我们重新评估了 Erastin、xCT、GPX4、细胞内半胱氨酸和 GSH、RSL3 或 ML162 与铁死亡之间的关系。我们得出的结论是,尽管胱氨酸和铁死亡都是癌症的潜在缺陷,但它们之间的关系还不够清楚。

相似文献

1
Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis.
Adv Cancer Res. 2024;162:1-44. doi: 10.1016/bs.acr.2024.04.001. Epub 2024 May 3.
3
Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro.
Exp Cell Res. 2019 Nov 1;384(1):111592. doi: 10.1016/j.yexcr.2019.111592. Epub 2019 Aug 31.
5
A novel anticancer property of polysaccharide in triggering ferroptosis of breast cancer cells.
J Zhejiang Univ Sci B. 2022 Apr 15;23(4):286-299. doi: 10.1631/jzus.B2100748.
6
Ferroptosis as a therapeutic vulnerability in MDM2 inhibition in dedifferentiated liposarcoma.
Oncol Lett. 2025 Apr 7;29(6):269. doi: 10.3892/ol.2025.15015. eCollection 2025 Jun.
7
Ferroptosis caused by cysteine insufficiency and oxidative insult.
Free Radic Res. 2020 Dec;54(11-12):969-980. doi: 10.1080/10715762.2019.1666983. Epub 2019 Sep 23.
8
Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis.
Curr Top Microbiol Immunol. 2017;403:143-170. doi: 10.1007/82_2016_508.
10
Mechanism of RSL3-induced ferroptotic cell death in HT22 cells: crucial role of protein disulfide isomerase.
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 15;57(4):616-632. doi: 10.3724/abbs.2024165.

引用本文的文献

1
Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5625. Epub 2025 Sep 5.
2
Mechanism of cell death and its application in the repair of inflammatory bowel disease by mesenchymal stem cells.
Front Immunol. 2025 Jun 4;16:1597462. doi: 10.3389/fimmu.2025.1597462. eCollection 2025.
3
The therapeutic potential of RNA m(6)A in lung cancer.
Cell Commun Signal. 2024 Dec 31;22(1):617. doi: 10.1186/s12964-024-01980-5.

本文引用的文献

1
A tangible method to assess native ferroptosis suppressor activity.
Cell Rep Methods. 2024 Mar 25;4(3):100710. doi: 10.1016/j.crmeth.2024.100710. Epub 2024 Feb 24.
2
Chemoproteomic Profiling of Erastin-Interacting Proteins.
Chem Res Toxicol. 2024 Jan 15;37(1):109-116. doi: 10.1021/acs.chemrestox.3c00347. Epub 2024 Jan 3.
3
The critical role of mitochondrial lipid peroxidation in ferroptosis: insights from recent studies.
Biophys Rev. 2023 Sep 13;15(5):875-885. doi: 10.1007/s12551-023-01126-w. eCollection 2023 Oct.
4
Establishment of SLC7A11-knockout mouse and its preliminary investigation in melanoma.
In Vitro Cell Dev Biol Anim. 2023 Oct;59(9):729-737. doi: 10.1007/s11626-023-00819-6. Epub 2023 Nov 6.
5
Structural insights into FSP1 catalysis and ferroptosis inhibition.
Nat Commun. 2023 Sep 22;14(1):5933. doi: 10.1038/s41467-023-41626-7.
6
TXNDC12 knockdown promotes ferroptosis by modulating SLC7A11 expression in glioma.
Clin Transl Sci. 2023 Oct;16(10):1957-1971. doi: 10.1111/cts.13604. Epub 2023 Aug 10.
7
Cardiolipin drives the catalytic activity of GPX4 on membranes: Insights from the R152H mutant.
Redox Biol. 2023 Aug;64:102806. doi: 10.1016/j.redox.2023.102806. Epub 2023 Jul 3.
8
DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition.
Nature. 2023 Jul;619(7968):E9-E18. doi: 10.1038/s41586-023-06269-0. Epub 2023 Jul 5.
9
Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition.
Nature. 2023 Jul;619(7968):E19-E23. doi: 10.1038/s41586-023-06270-7.
10
Biological insights in non-small cell lung cancer.
Cancer Biol Med. 2023 Jun 28;20(7):500-18. doi: 10.20892/j.issn.2095-3941.2023.0108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验