Tyryshkin Alexei M, Watt Richard K, Baranov Sergei V, Dasgupta Jyotishman, Hendrich Michael P, Dismukes G Charles
Department of Chemistry and the Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA.
Biochemistry. 2006 Oct 24;45(42):12876-89. doi: 10.1021/bi061495t.
Biogenesis and repair of the inorganic core (Mn4CaO(x)Cl(y)), in the water-oxidizing complex of photosystem II (WOC-PSII), occurs through the light-induced (re)assembly of its free elementary ions and the apo-WOC-PSII protein, a reaction known as photoactivation. Herein, we use electron paramagnetic resonance (EPR) spectroscopy to characterize changes in the ligand coordination environment of the first photoactivation intermediate, the photo-oxidized Mn3+ bound to apo-WOC-PSII. On the basis of the observed changes in electron Zeeman (g(eff)), 55Mn hyperfine (A(Z)) interaction, and the EPR transition probabilities, the photogenerated Mn3+ is shown to exist in two pH-dependent forms, differing in terms of strength and symmetry of their ligand fields. The transition from an EPR-invisible low-pH form to an EPR-active high-pH form occurs by deprotonation of an ionizable ligand bound to Mn3+, implicated to be a water molecule: [Mn3+ (OH2)] <--> [Mn3+ (OH-)]. In the absence of Ca2+, the EPR-active Mn3+ exhibits a strong pH dependence (pH approximately 6.5-9) of its ligand-field symmetry (rhombicity Delta delta = 10%, derived from g(eff)) and A(Z) (DeltaA(Z) = 22%), attributable to a protein conformational change. Binding of Ca2+ to its effector site eliminates this pH dependence and locks both g(eff) and A(Z) at values observed in the absence of Ca2+ at alkaline pH. Thus, Ca2+ directly controls the coordination environment and binds close to the high-affinity Mn3+, probably sharing a bridging ligand. This Ca2+ effect and the pH-induced changes are consistent with the ionization of the bridging water molecule, predicting that [Mn3+-(mu-O(-2))-Ca2+] or [Mn3+-(mu-OH(-))2-Ca2+] is the first light intermediate in the presence of Ca2+. The formation of this intermediate templates the apo-WOC-PSII for the subsequent rapid cooperative binding and photo-oxidation of three additional Mn2+ ions, forming the active water oxidase.
光系统II(WOC-PSII)水氧化复合物中无机核心(Mn4CaO(x)Cl(y))的生物合成与修复,是通过其游离元素离子与脱辅基WOC-PSII蛋白的光诱导(再)组装来实现的,这一反应称为光激活。在此,我们使用电子顺磁共振(EPR)光谱来表征第一个光激活中间体(即与脱辅基WOC-PSII结合的光氧化Mn3+)的配体配位环境的变化。基于观察到的电子塞曼(g(eff))、55Mn超精细(A(Z))相互作用以及EPR跃迁概率的变化,光生Mn3+显示以两种pH依赖形式存在,其配体场的强度和对称性不同。从EPR不可见的低pH形式到EPR活性的高pH形式的转变,是通过与Mn3+结合的可电离配体(推测为水分子)的去质子化发生的:[Mn3+ (OH2)] <--> [Mn3+ (OH-)]。在没有Ca2+的情况下,EPR活性Mn3+的配体场对称性(菱形度Delta delta = 10%,由g(eff)得出)和A(Z)(DeltaA(Z) = 22%)表现出强烈的pH依赖性(pH约为6.5 - 9),这归因于蛋白质构象变化。Ca2+与其效应位点的结合消除了这种pH依赖性,并将g(eff)和A(Z)锁定在碱性pH下无Ca2+时观察到的值。因此,Ca2+直接控制配位环境,并与高亲和力的Mn3+紧密结合,可能共享一个桥连配体。这种Ca2+效应和pH诱导的变化与桥连水分子的电离一致,预测在有Ca2+存在时,[Mn3+-(μ-O(-2))-Ca2+]或[Mn3+-(μ-OH(-))2-Ca2+]是第一个光中间体。这种中间体的形成使脱辅基WOC-PSII成为随后另外三个Mn2+离子快速协同结合和光氧化的模板,从而形成活性水氧化酶。