Suppr超能文献

重建产氧光合作用的起源:组装和光激活能否重现进化过程?

Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution?

作者信息

Cardona Tanai

机构信息

Department of Life Sciences, Imperial College London London, UK.

出版信息

Front Plant Sci. 2016 Mar 2;7:257. doi: 10.3389/fpls.2016.00257. eCollection 2016.

Abstract

Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis.

摘要

由于如今跨越广泛生物多样性的基因组和蛋白质结构极为丰富,现在比以往任何时候都更有可能以令人难以置信的详细程度重建蛋白质复合物的分子进化。在此,我讲述氧光合作用的故事,即一个祖先反应中心是如何转变为一台能够进行水氧化的复杂光化学机器的。首先,我回顾所有反应中心蛋白的进化,以强调如今仅在蓝细菌门中发现的光系统II和光系统I在光合作用历史中很早就分支出来了。因此,它们极不可能是通过水平基因转移从任何已描述的无氧光合细菌门中获得的。其次,我提出了一个关于光系统II的CP43和CP47天线起源的新进化情景。我认为天线蛋白起源于整个I型反应中心蛋白的重塑,而不是I型反应中心基因的部分基因重复。第三,我强调光系统II和光系统I反应中心蛋白如何以非常相似的模式与小的外周亚基相互作用,并推测这种复杂性的一部分可能追溯到最原始的反应中心。第四,我概述了导致Mn4CaO5簇起源的一系列事件,并表明最原始的II型反应中心具有一些在水氧化复合物的配位中变得至关重要的基本结构成分。最后,我收集所有这些观点,从第一个反应中心蛋白的起源开始,到水氧化簇的出现结束,推测光系统II组装和光激活的复杂且有序的过程概括了氧光合作用途径中的进化转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a392/4773611/a6285cc67bb5/fpls-07-00257-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验