Suppr超能文献

一种评估情绪波动的新方法:对双相情感障碍/情感性疾病病程及治疗效果评估的意义

A novel technique to evaluate fluctuations of mood: implications for evaluating course and treatment effects in bipolar/affective disorders.

作者信息

Sree Hari Rao V, Raghvendra Rao C, Yeragani Vikram K

机构信息

Department of Mathematics, Jawaharlal Nehru Technological University, India.

出版信息

Bipolar Disord. 2006 Oct;8(5 Pt 1):453-66. doi: 10.1111/j.1399-5618.2006.00374.x.

Abstract

OBJECTIVES

Several psychiatric conditions are associated with frequent fluctuations of affect. In this study, we propose a new technique to uniformly score depression and mania objectively and use a new mathematical technique to model the frequent fluctuations in mood using simulated data. Our main aim is to examine the usefulness of this measure for evaluating treatment effects or course of illness, especially in bipolar or unipolar affective illness to quantify mood fluctuations.

METHODS

We use a prototypical model, which takes into account the mean, the standard deviation (SD) and the coefficient of variation (CV = SD*100/mean) of the mood scores of the subjects over a user-defined period. We utilize simulated data of subjects for euthymia, minor depression, minor mania, severe depression, severe mania and cyclic bipolar illness (manic depression, MDP). We propose an objective method to quantify the mood of the subjects at weekly intervals (the interval can be user-defined) using a scale of 1-9 (1-4 = degrees of depression, 5 = euthymia, 6-9 = degrees of mania). These scores can be sampled according to the convenience and feasibility of the measurements, which can be derived from various clinical scales or by observation of the subjects in hospitals or other environments. We derive a new mathematical technique to arrive at a normalized measure for each of these conditions of simulated data in addition to the mean, SD and approximate entropy (ApEn).

RESULTS

We utilize three sets of data, one to train the model to classify the condition of the subjects and the other two to test the reliability of the technique. We are able to successfully classify the condition of the subjects over a 52-timepoint period (length can be days or weeks depending upon the sampling rate). The New Index (NI) correlates significantly only with the mean (r(2) = 0.78), but not with the SD or ApEn score.

CONCLUSIONS

These results indicate that it may be beneficial to reduce data according to the techniques we propose so that there is greater uniformity within which to compare future studies to evaluate treatment effects, not only in rapid-cycling MDP but also in other affective disorders. This method may be suitable for the meta-analysis of several studies, although different scales have been used in each of those studies. Our measure derived from simulated data has shown sufficient deviation of all the abnormal states from the euthymic state. The advantages and pitfalls of these techniques are further discussed to evaluate affect in various disorders. However, future prospective studies must address the importance of this measure in comparison with mean, SD and ApEn scores or other nonlinear measures of these time series. We are evaluating other nonlinear dynamic models, which may provide a continuous measure with which to identify different degrees of fluctuation of mood.

摘要

目的

几种精神疾病与情感的频繁波动有关。在本研究中,我们提出一种新技术,以客观地统一对抑郁和躁狂进行评分,并使用一种新的数学技术,利用模拟数据对情绪的频繁波动进行建模。我们的主要目的是检验这种测量方法在评估治疗效果或疾病进程方面的有用性,特别是在双相情感障碍或单相情感障碍中量化情绪波动。

方法

我们使用一个原型模型,该模型考虑了受试者在用户定义时间段内情绪评分的均值、标准差(SD)和变异系数(CV = SD×100/均值)。我们利用了正常心境、轻度抑郁、轻度躁狂、重度抑郁、重度躁狂和周期性双相情感障碍(躁郁症,MDP)受试者的模拟数据。我们提出一种客观方法,使用1 - 9的量表(1 - 4 = 抑郁程度,5 = 正常心境,6 - 9 = 躁狂程度),每周(时间间隔可由用户定义)对受试者的情绪进行量化。这些评分可根据测量的便利性和可行性进行采样,测量可源自各种临床量表,或通过在医院或其他环境中对受试者的观察得出。除了均值、标准差和近似熵(ApEn)外,我们还推导了一种新的数学技术,以得出这些模拟数据每种情况的归一化测量值。

结果

我们使用三组数据,一组用于训练模型以对受试者的状况进行分类,另外两组用于测试该技术的可靠性。我们能够在52个时间点的时间段内成功对受试者的状况进行分类(长度可根据采样率为天数或周数)。新指数(NI)仅与均值显著相关(r(2) = 0.78),但与标准差或ApEn评分无关。

结论

这些结果表明,按照我们提出的技术减少数据可能是有益的,这样在比较未来研究以评估治疗效果时就有更大的一致性,不仅适用于快速循环型MDP,也适用于其他情感障碍。这种方法可能适用于多项研究的荟萃分析,尽管每项研究中使用的量表不同。我们从模拟数据得出的测量值显示,所有异常状态与正常心境状态都有足够的偏差。我们进一步讨论了这些技术的优点和缺陷,以评估各种疾病中的情感。然而,未来的前瞻性研究必须探讨与均值、标准差和ApEn评分或这些时间序列的其他非线性测量值相比,这种测量方法的重要性。我们正在评估其他非线性动态模型,它们可能提供一种连续测量方法,以识别不同程度的情绪波动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验