Suppr超能文献

监测并校正磁共振成像(MR)扫描仪静磁场的时空变化。

Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.

作者信息

El-Sharkawy AbdEl Monem, Schär Michael, Bottomley Paul A, Atalar Ergin

机构信息

The Department of Electrical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.

Abstract

The homogeneity and stability of the static magnetic field are of paramount importance to the accuracy of MR procedures that are sensitive to phase errors and magnetic field inhomogeneity. It is shown that intense gradient utilization in clinical horizontal-bore superconducting MR scanners of three different vendors results in main magnetic fields that vary on a long time scale both spatially and temporally by amounts of order 0.8-2.5 ppm. The observed spatial changes have linear and quadratic variations that are strongest along the z direction. It is shown that the effect of such variations is of sufficient magnitude to completely obfuscate thermal phase shifts measured by proton-resonance frequency-shift MR thermometry and certainly affect accuracy. In addition, field variations cause signal loss and line-broadening in MR spectroscopy, as exemplified by a fourfold line-broadening of metabolites over the course of a 45 min human brain study. The field variations are consistent with resistive heating of the magnet structures. It is concluded that correction strategies are required to compensate for these spatial and temporal field drifts for phase-sensitive MR protocols. It is demonstrated that serial field mapping and phased difference imaging correction protocols can substantially compensate for the drift effects observed in the MR thermometry and spectroscopy experiments.

摘要

静磁场的均匀性和稳定性对于对相位误差和磁场不均匀性敏感的磁共振成像(MR)程序的准确性至关重要。研究表明,在三种不同供应商的临床水平孔径超导MR扫描仪中大量使用梯度会导致主磁场在长时间尺度上在空间和时间上发生变化,变化量约为0.8 - 2.5 ppm。观察到的空间变化具有线性和二次变化,沿z方向最为明显。结果表明,这种变化的影响程度足以完全掩盖通过质子共振频率偏移MR测温法测量的热相位偏移,并且肯定会影响准确性。此外,磁场变化会导致MR波谱中的信号损失和线宽展宽,例如在一项45分钟的人脑研究过程中代谢物的线宽展宽了四倍。磁场变化与磁体结构的电阻加热一致。得出的结论是,对于相位敏感的MR协议,需要校正策略来补偿这些空间和时间上的磁场漂移。结果表明,串行磁场映射和相位差成像校正协议可以大大补偿在MR测温法和波谱实验中观察到的漂移效应。

相似文献

1
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.
2
Direct B0 field monitoring and real-time B0 field updating in the human breast at 7 Tesla.
Magn Reson Med. 2012 Feb;67(2):586-91. doi: 10.1002/mrm.23272. Epub 2011 Dec 12.
4
Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T.
Biomed Eng Online. 2018 Apr 10;17(1):39. doi: 10.1186/s12938-018-0472-x.
6
High-resolution MR spectroscopy via intermolecular double-quantum coherences in inhomogeneous B0 and B1 fields.
Magn Reson Imaging. 2011 Jun;29(5):601-7. doi: 10.1016/j.mri.2011.02.001. Epub 2011 Apr 29.
7
Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.
Brain Stimul. 2014 May-Jun;7(3):388-93. doi: 10.1016/j.brs.2014.02.007. Epub 2014 Feb 20.

引用本文的文献

1
Magnetic resonance microscopy for submillimeter samples in a horizontal MR scanner.
Sci Rep. 2024 Oct 9;14(1):23583. doi: 10.1038/s41598-024-73271-5.
3
POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia.
Med Phys. 2022 Aug;49(8):4955-4970. doi: 10.1002/mp.15811. Epub 2022 Jun 26.
5
Dissociable roles for the striatal cholinergic system in different flexibility contexts.
IBRO Neurosci Rep. 2022 Apr 1;12:260-270. doi: 10.1016/j.ibneur.2022.03.007. eCollection 2022 Jun.
6
γ-aminobutyric acid measurement in the human brain at 7 T: Short echo-time or Mescher-Garwood editing.
NMR Biomed. 2022 Jul;35(7):e4706. doi: 10.1002/nbm.4706. Epub 2022 Feb 18.
7
High-resolution, 3D multi-TE H MRSI using fast spatiospectral encoding and subspace imaging.
Magn Reson Med. 2022 Mar;87(3):1103-1118. doi: 10.1002/mrm.29015. Epub 2021 Nov 9.
8
Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system.
Int J Hyperthermia. 2021;38(1):1590-1600. doi: 10.1080/02656736.2021.1998658.
9
Frequency drift in MR spectroscopy at 3T.
Neuroimage. 2021 Nov 1;241:118430. doi: 10.1016/j.neuroimage.2021.118430. Epub 2021 Jul 24.
10
B field homogeneity recommendations, specifications, and measurement units for MRI in radiation therapy.
Med Phys. 2020 Sep;47(9):4101-4114. doi: 10.1002/mp.14306. Epub 2020 Jul 19.

本文引用的文献

1
On restoring motion-induced signal loss in single-voxel magnetic resonance spectra.
Magn Reson Med. 2006 Oct;56(4):754-60. doi: 10.1002/mrm.21015.
2
Single breath-hold whole-heart MRA using variable-density spirals at 3T.
Magn Reson Med. 2006 Feb;55(2):371-9. doi: 10.1002/mrm.20765.
3
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Magn Reson Med. 2005 Nov;54(5):1261-7. doi: 10.1002/mrm.20695.
4
Referenceless PRF shift thermometry.
Magn Reson Med. 2004 Jun;51(6):1223-31. doi: 10.1002/mrm.20090.
5
Cardiac SSFP imaging at 3 Tesla.
Magn Reson Med. 2004 Apr;51(4):799-806. doi: 10.1002/mrm.20024.
6
Single-shot magnetic field mapping embedded in echo-planar time-course imaging.
Magn Reson Med. 2003 Oct;50(4):839-43. doi: 10.1002/mrm.10587.
8
Magnetic resonance temperature imaging for guidance of thermotherapy.
J Magn Reson Imaging. 2000 Oct;12(4):525-33. doi: 10.1002/1522-2586(200010)12:4<525::aid-jmri3>3.0.co;2-v.
9
Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue.
Magn Reson Med. 2000 Jan;43(1):62-71. doi: 10.1002/(sici)1522-2594(200001)43:1<62::aid-mrm8>3.0.co;2-1.
10
Sources of distortion in functional MRI data.
Hum Brain Mapp. 1999;8(2-3):80-5. doi: 10.1002/(sici)1097-0193(1999)8:2/3<80::aid-hbm2>3.0.co;2-c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验