Suppr超能文献

功能磁共振成像中由于机械振动引起的磁场偏移。

Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

作者信息

Foerster Bernd U, Tomasi Dardo, Caparelli Elisabeth C

机构信息

Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA.

出版信息

Magn Reson Med. 2005 Nov;54(5):1261-7. doi: 10.1002/mrm.20695.

Abstract

Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.

摘要

在回波平面成像(EPI)读出过程中,梯度线圈系统的机械振动会升高梯度系统的温度,并在功能磁共振成像(fMRI)期间改变磁场分布。这种效应会因振动的共振模式而增强,并在fMRI研究中导致沿相位编码方向的明显运动。通过监测与EPI采集交错的共振频率,在EPI期间对磁场漂移进行了量化,并提出了一种校正明显运动的新方法。利用随时间变化的频率漂移知识来校正k空间EPI数据集的相位。由于共振频率随时间变化非常缓慢,在EPI采集之前和之后立即进行的两次共振频率测量足以消除fMRI时间序列中的场漂移效应。对频率漂移校正方法进行了“体内”测试,并与标准图像重排方法进行了比较。所提出的方法有效地校正了fMRI期间由于磁场漂移引起的伪运动。

相似文献

1
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Magn Reson Med. 2005 Nov;54(5):1261-7. doi: 10.1002/mrm.20695.
4
Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.
J Magn Reson Imaging. 2015 May;41(5):1447-53. doi: 10.1002/jmri.24675. Epub 2014 Jun 23.
5
Phased array ghost elimination.
NMR Biomed. 2006 May;19(3):352-61. doi: 10.1002/nbm.1044.
6
Simple method for MR gradient system characterization and k-space trajectory estimation.
Magn Reson Med. 2012 Jul;68(1):120-9. doi: 10.1002/mrm.23217. Epub 2011 Dec 21.
7
Real-time feedback optimization of z-shim gradient for automatic compensation of susceptibility-induced signal loss in EPI.
Neuroimage. 2011 Apr 15;55(4):1587-92. doi: 10.1016/j.neuroimage.2011.01.045. Epub 2011 Jan 20.
8
Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality.
Magn Reson Imaging. 2012 Jan;30(1):36-47. doi: 10.1016/j.mri.2011.09.010. Epub 2011 Nov 3.

引用本文的文献

2
The diagnostic potential of resting state functional MRI: Statistical concerns.
Neuroimage. 2025 Aug 15;317:121334. doi: 10.1016/j.neuroimage.2025.121334. Epub 2025 Jun 17.
3
Single-shot echo planar time-resolved imaging for multi-echo functional MRI and distortion-free diffusion imaging.
Magn Reson Med. 2025 Mar;93(3):993-1013. doi: 10.1002/mrm.30327. Epub 2024 Oct 20.
4
Multidimensional RF pulse design with consideration of concomitant field effects.
Magn Reson Med. 2025 Feb;93(2):718-729. doi: 10.1002/mrm.30311. Epub 2024 Oct 4.
6
7
Improved dynamic distortion correction for fMRI using single-echo EPI and a readout-reversed first image (REFILL).
Hum Brain Mapp. 2023 Oct 15;44(15):5095-5112. doi: 10.1002/hbm.26440. Epub 2023 Aug 7.
8
Quality control practices in FMRI analysis: Philosophy, methods and examples using AFNI.
Front Neurosci. 2023 Jan 30;16:1073800. doi: 10.3389/fnins.2022.1073800. eCollection 2022.
9
A numerical human brain phantom for dynamic glucose-enhanced (DGE) MRI: On the influence of head motion at 3T.
Magn Reson Med. 2023 May;89(5):1871-1887. doi: 10.1002/mrm.29563. Epub 2022 Dec 29.
10
Real-time shimming with FID navigators.
Magn Reson Med. 2022 Dec;88(6):2548-2563. doi: 10.1002/mrm.29421. Epub 2022 Sep 12.

本文引用的文献

1
FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986.
J Magn Reson. 2011 Dec;213(2):533-41. doi: 10.1016/j.jmr.2011.09.021.
2
Dynamic field map estimation using a spiral-in/spiral-out acquisition.
Magn Reson Med. 2004 Jun;51(6):1194-204. doi: 10.1002/mrm.20079.
3
Echo planar imaging at 4 Tesla with minimum acoustic noise.
J Magn Reson Imaging. 2003 Jul;18(1):128-30. doi: 10.1002/jmri.10326.
4
Real-time autoshimming for echo planar timecourse imaging.
Magn Reson Med. 2002 Nov;48(5):771-80. doi: 10.1002/mrm.10259.
6
A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001 Jun;5(2):143-56. doi: 10.1016/s1361-8415(01)00036-6.
8
Artifact due to B(0) fluctuations in fMRI: correction using the k-space central line.
Magn Reson Med. 2001 Jul;46(1):198-201. doi: 10.1002/mrm.1177.
9
A B(0) shift correction method based on edge RMS reduction for EPI fMRI.
J Magn Reson Imaging. 2000 Dec;12(6):956-9. doi: 10.1002/1522-2586(200012)12:6<956::aid-jmri21>3.0.co;2-5.
10
Gradient-induced acoustic and magnetic field fluctuations in a 4T whole-body MR imager.
Magn Reson Med. 2000 Oct;44(4):532-6. doi: 10.1002/1522-2594(200010)44:4<532::aid-mrm6>3.0.co;2-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验