Suppr超能文献

沙鼠中耳的低频有限元建模

Low-frequency finite-element modeling of the gerbil middle ear.

作者信息

Elkhouri Nidal, Liu Hengjin, Funnell W Robert J

机构信息

Department of BioMedical Engineering, McGill University, 3775, rue University, Montréal, QC, Canada, H3A 2B4.

出版信息

J Assoc Res Otolaryngol. 2006 Dec;7(4):399-411. doi: 10.1007/s10162-006-0055-6. Epub 2006 Oct 17.

Abstract

The gerbil is a popular species for experimental middle-ear research. The goal of this study is to develop a 3D finite-element model to quantify the mechanics of the gerbil middle ear at low frequencies (up to about 1 kHz). The 3D reconstruction is based on a magnetic resonance imaging dataset with a voxel size of about 45 microm, and an x-ray micro-CT dataset with a voxel size of about 5.5 microm, supplemented by histological images. The eardrum model is based on moiré shape measurements. Each individual structure in the model was assumed to be homogeneous with isotropic, linear, and elastic material properties derived from a priori estimates in the literature. The behavior of the finite-element model in response to a uniform acoustic pressure on the eardrum of 1 Pa is analyzed. Sensitivity tests are done to evaluate the significance of the various parameters in the finite-element model. The Young's modulus and the thickness of the pars tensa have the most significant effect on the load transfer between the eardrum and the ossicles and, along with the Young's modulus of the pedicle and stapedial annular ligament, on the displacements of the stapes. Overall, the model demonstrates good agreement with low-frequency experimental data. For example, (1) the maximum footplate displacement is about 35 nm; (2) the umbo/stapes displacement ratio is found to be about 3.5; (3) the motion of the stapes is predominantly piston-like; and (4) the displacement pattern of the eardrum shows two points of maximum displacement, one in the posterior region and one in the anterior region. The effects of removing or stiffening the ligaments are comparable to those observed experimentally.

摘要

沙鼠是用于实验性中耳研究的常用物种。本研究的目的是建立一个三维有限元模型,以量化沙鼠中耳在低频(高达约1kHz)下的力学特性。三维重建基于体素大小约为45微米的磁共振成像数据集和体素大小约为5.5微米的X射线显微CT数据集,并辅以组织学图像。鼓膜模型基于莫尔条纹形状测量。模型中的每个单独结构都假定为均匀的,具有从文献中的先验估计得出的各向同性、线性和弹性材料特性。分析了有限元模型在鼓膜上1Pa均匀声压作用下的行为。进行敏感性测试以评估有限元模型中各种参数的重要性。鼓膜紧张部的杨氏模量和厚度对鼓膜与听小骨之间的载荷传递影响最为显著,并且与椎弓根和镫骨环形韧带的杨氏模量一起,对镫骨的位移有显著影响。总体而言,该模型与低频实验数据显示出良好的一致性。例如,(1)镫骨足板的最大位移约为35nm;(2)鼓膜脐/镫骨位移比约为3.5;(3)镫骨的运动主要呈活塞样;(4)鼓膜的位移模式显示出两个最大位移点,一个在后部区域,一个在前部区域。去除或加强韧带的效果与实验观察到的效果相当。

相似文献

1
Low-frequency finite-element modeling of the gerbil middle ear.
J Assoc Res Otolaryngol. 2006 Dec;7(4):399-411. doi: 10.1007/s10162-006-0055-6. Epub 2006 Oct 17.
2
Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
J Assoc Res Otolaryngol. 2015 Oct;16(5):547-67. doi: 10.1007/s10162-015-0531-y. Epub 2015 Jul 22.
3
[Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016 Dec;30(24):1935-1939. doi: 10.13201/j.issn.1001-1781.2016.24.008.
4
Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
Kaohsiung J Med Sci. 2013 Mar;29(3):133-9. doi: 10.1016/j.kjms.2012.08.023. Epub 2012 Nov 22.
5
Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
Hear Res. 2010 May;263(1-2):168-76. doi: 10.1016/j.heares.2010.02.005. Epub 2010 Feb 8.
6
A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
Proc Inst Mech Eng H. 2019 Aug;233(8):784-792. doi: 10.1177/0954411919853364. Epub 2019 Jun 5.
7
Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model.
Comput Methods Programs Biomed. 2022 Mar;215:106619. doi: 10.1016/j.cmpb.2022.106619. Epub 2022 Jan 5.
8
Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
Hear Res. 2017 Mar;345:69-78. doi: 10.1016/j.heares.2017.01.002. Epub 2017 Jan 10.
9
The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
Proc Inst Mech Eng H. 2011 Jan;225(1):68-76. doi: 10.1243/09544119JEIM783.
10
Relative importance and interactions of parameters of finite-element models of human middle ear.
J Acoust Soc Am. 2023 Aug 1;154(2):619-634. doi: 10.1121/10.0020273.

引用本文的文献

1
The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal.
PLoS One. 2024 Apr 10;19(4):e0298535. doi: 10.1371/journal.pone.0298535. eCollection 2024.
2
Finite element modelling of sound transmission in the Weberian apparatus of zebrafish ().
J R Soc Interface. 2024 Jan;21(210):20230553. doi: 10.1098/rsif.2023.0553. Epub 2024 Jan 10.
3
Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.
J Assoc Res Otolaryngol. 2023 Jun;24(3):339-363. doi: 10.1007/s10162-023-00899-x. Epub 2023 May 10.
4
Combined analysis of finite element model and audiometry provides insights into the pathogenesis of conductive hearing loss.
Front Bioeng Biotechnol. 2022 Sep 2;10:967475. doi: 10.3389/fbioe.2022.967475. eCollection 2022.
5
Are suspensory ligaments important for middle ear reconstruction?
PLoS One. 2021 Aug 24;16(8):e0255821. doi: 10.1371/journal.pone.0255821. eCollection 2021.
6
Micro-CT imaging of Thiel-embalmed and iodine-stained human temporal bone for 3D modeling.
J Otolaryngol Head Neck Surg. 2021 Jun 2;50(1):33. doi: 10.1186/s40463-021-00522-0.
8
Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage.
Hear Res. 2017 Jun;349:111-128. doi: 10.1016/j.heares.2017.01.015. Epub 2017 Feb 2.
9
3D finite element model of the chinchilla ear for characterizing middle ear functions.
Biomech Model Mechanobiol. 2016 Oct;15(5):1263-77. doi: 10.1007/s10237-016-0758-5. Epub 2016 Jan 19.
10
Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
J Assoc Res Otolaryngol. 2015 Oct;16(5):547-67. doi: 10.1007/s10162-015-0531-y. Epub 2015 Jul 22.

本文引用的文献

1
Automatic calibration method for phase shift shadow moire interferometry.
Appl Opt. 1990 Apr 1;29(10):1474-6. doi: 10.1364/AO.29.001474.
2
Thickness of the gerbil tympanic membrane measured with confocal microscopy.
Hear Res. 2005 Nov;209(1-2):42-52. doi: 10.1016/j.heares.2005.06.003. Epub 2005 Jul 28.
3
Three approaches for estimating the elastic modulus of the tympanic membrane.
J Biomech. 2005 Sep;38(9):1807-15. doi: 10.1016/j.jbiomech.2004.08.022.
4
On the coupling between the incus and the stapes in the cat.
J Assoc Res Otolaryngol. 2005 Mar;6(1):9-18. doi: 10.1007/s10162-004-5016-3. Epub 2005 Apr 22.
5
Computer-integrated finite element modeling of human middle ear.
Biomech Model Mechanobiol. 2002 Oct;1(2):109-22. doi: 10.1007/s10237-002-0014-z.
6
Fixation of the anterior mallear ligament: diagnosis and consequences for hearing results in stapes surgery.
Ann Otol Rhinol Laryngol. 2003 Apr;112(4):348-55. doi: 10.1177/000348940311200409.
7
High-frequency sensitivity of the mature gerbil cochlea and its development.
Audiol Neurootol. 2003 Jan-Feb;8(1):19-27. doi: 10.1159/000067892.
9
Modeling of the human middle ear using the finite-element method.
J Acoust Soc Am. 2002 Mar;111(3):1306-17. doi: 10.1121/1.1451073.
10
Development of wide-band middle ear transmission in the Mongolian gerbil.
J Acoust Soc Am. 2002 Jan;111(1 Pt 1):261-70. doi: 10.1121/1.1420382.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验