Suppr超能文献

生物亲和测定荧光信号的稳健估计

Robust estimation of bioaffinity assay fluorescence signals.

作者信息

Glotsos Dimitris, Tohka Jussi, Soukka Jori, Soini Juhani T, Ruotsalainen Ulla

机构信息

Medical Image Processing and Analysis Unit, Medical Physics Laboratory, University of Patras, Patras, Greece.

出版信息

IEEE Trans Inf Technol Biomed. 2006 Oct;10(4):733-9. doi: 10.1109/titb.2006.875658.

Abstract

In this paper, the challenging problem of robust mean-signal estimation of a single-step microparticle bioaffinity assay is investigated. For this purpose, a density estimation-based robust algorithm (DER) was developed. The DER algorithm was comparatively evaluated with four other parameter estimation methods (mean value, median filtering, least square estimation, Welsch robust m-estimator). Two important questions were raised and investigated: 1) Which of the five methods can robustly estimate the mean bioaffinity signal? and 2) How many microparticles need to be measured in order to obtain an accurate estimate of the mean signal value? To answer the questions, bootstrap and coefficient of variation (CV) analyses were performed. In the CV analysis, the DER algorithm gave the best results: The CV ranged from 0.8% to 4.9% when the number of microparticles used for the mean signal estimation varied from 800 to 30. In the bootstrap analysis of the standard error, the DER algorithm had the smallest variance. As a conclusion, it can be underlined that: 1) of all methods tested, the DER algorithm gave the most consistent and reproducible results according to the bootstrap and CV analysis; 2) using the DER algorithm accurate estimates could be calculated based on 80-100 particles, corresponding to a typical assay measurement time of 1 min; and 3) the investigated bioaffinity signals contained a large number of outliers (observations that severely deviate from the majority of data) and therefore robust techniques were necessary for the mean signal estimation tasks.

摘要

本文研究了单步微粒生物亲和测定中稳健平均信号估计这一具有挑战性的问题。为此,开发了一种基于密度估计的稳健算法(DER)。将DER算法与其他四种参数估计方法(均值、中值滤波、最小二乘估计、韦尔奇稳健m估计器)进行了比较评估。提出并研究了两个重要问题:1)这五种方法中哪一种能够稳健地估计平均生物亲和信号?2)为了获得平均信号值的准确估计,需要测量多少个微粒?为了回答这些问题,进行了自助法和变异系数(CV)分析。在CV分析中,DER算法给出了最佳结果:当用于平均信号估计的微粒数量从800变化到30时,CV范围为0.8%至4.9%。在标准误差的自助法分析中,DER算法的方差最小。总之,可以强调的是:1)根据自助法和CV分析,在所有测试方法中,DER算法给出了最一致且可重复的结果;2)使用DER算法,基于80 - 100个微粒可以计算出准确估计值,这对应于典型测定测量时间1分钟;3)所研究的生物亲和信号包含大量异常值(严重偏离大多数数据的观测值),因此稳健技术对于平均信号估计任务是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验