Tyrrell James Alexander, di Tomaso Emmanuelle, Fuja Daniel, Tong Ricky, Kozak Kevin, Jain Rakesh K, Roysam Badrinath
Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
IEEE Trans Med Imaging. 2007 Feb;26(2):223-37. doi: 10.1109/TMI.2006.889722.
This paper presents methods to model complex vasculature in three-dimensional (3-D) images using cylindroidal superellipsoids, along with robust estimation and detection algorithms for automated image analysis. This model offers an explicit, low-order parameterization, enabling joint estimation of boundary, centerlines, and local pose. It provides a geometric framework for directed vessel traversal, and extraction of topological information like branch point locations and connectivity. M-estimators provide robust region-based statistics that are used to drive the superellipsoid toward a vessel boundary. A robust likelihood ratio test is used to differentiate between noise, artifacts, and other complex unmodeled structures, thereby verifying the model estimate. The proposed methodology behaves well across scale-space, shows a high degree of insensitivity to adjacent structures and implicitly handles branching. When evaluated on synthetic imagery mimicking specific structural complexities in tumor microvasculature, it consistently produces ubvoxel accuracy estimates of centerlines and widths in the presence of closely-adjacent vessels, branch points, and noise. An edit-based validation demonstrated a precision level of 96.6% at a recall level of 95.4%. Overall, it is robust enough for large-scale application.
本文介绍了使用圆柱超椭球体对三维(3-D)图像中的复杂脉管系统进行建模的方法,以及用于自动图像分析的稳健估计和检测算法。该模型提供了一种显式的低阶参数化方法,能够联合估计边界、中心线和局部姿态。它为定向血管遍历以及提取诸如分支点位置和连通性等拓扑信息提供了一个几何框架。M估计器提供稳健的基于区域的统计信息,用于驱动超椭球体朝向血管边界。使用稳健似然比检验来区分噪声、伪影和其他复杂的未建模结构,从而验证模型估计。所提出的方法在尺度空间中表现良好,对相邻结构具有高度不敏感性,并隐式处理分支。在模拟肿瘤微血管中特定结构复杂性的合成图像上进行评估时,在存在紧密相邻血管、分支点和噪声的情况下,它始终能产生亚体素精度的中心线和宽度估计。基于编辑的验证在召回率为95.4%时显示出96.6%的精度水平。总体而言,它足够稳健,可用于大规模应用。