Bart Suzanne C, Chłopek Krzysztof, Bill Eckhard, Bouwkamp Marco W, Lobkovsky Emil, Neese Frank, Wieghardt Karl, Chirik Paul J
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
J Am Chem Soc. 2006 Oct 25;128(42):13901-12. doi: 10.1021/ja064557b.
The electronic structure of a family of bis(imino)pyridine iron dihalide, monohalide, and neutral ligand compounds has been investigated by spectroscopic and computational methods. The metrical parameters combined with Mössbauer spectroscopic and magnetic data for ((i)PrPDI)FeCl(2) ((i)PrPDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N=CMe)(2)C(5)H(3)N) established a high-spin ferrous center ligated by a neutral bis(imino)pyridine ligand. Comparing these data to those for the single electron reduction product, ((i)PrPDI)FeCl, again demonstrated a high-spin ferrous ion, but in this case the S(Fe) = 2 metal center is antiferromagnetically coupled to a ligand-centered radical (S(L) = (1)/(2)), accounting for the experimentally observed S = (3)/(2) ground state. Continued reduction to ((i)PrPDI)FeL(n) (L = N(2), n = 1,2; CO, n = 2; 4-(N,N-dimethylamino)pyridine, n = 1) resulted in a doubly reduced bis(imino)pyridine diradical, preserving the ferrous ion. Both the computational and the experimental data for the N,N-(dimethylamino)pyridine compound demonstrate nearly isoenergetic singlet (S(L) = 0) and triplet (S(L) = 1) forms of the bis(imino)pyridine dianion. In both spin states, the iron is intermediate spin (S(Fe) = 1) ferrous. Experimentally, the compound has a spin singlet ground state (S = 0) due to antiferromagnetic coupling of iron and the ligand triplet state. Mixing of the singlet diradical excited state with the triplet ground state of the ligand via spin-orbit coupling results in temperature-independent paramagnetism and accounts for the large dispersion in (1)H NMR chemical shifts observed for the in-plane protons on the chelate. Overall, these studies establish that reduction of ((i)PrPDI)FeCl(2) with alkali metal or borohydride reagents results in sequential electron transfers to the conjugated pi-system of the ligand rather than to the metal center.
通过光谱和计算方法研究了双(亚氨基)吡啶二卤化铁、一卤化铁和中性配体化合物家族的电子结构。对于((i)PrPDI)FeCl₂((i)PrPDI = 2,6 -(2,6 -(i)Pr₂C₆H₃N = CMe)₂C₅H₃N),其结构参数与穆斯堡尔光谱和磁性数据相结合,确定了一个由中性双(亚氨基)吡啶配体配位的高自旋亚铁中心。将这些数据与单电子还原产物((i)PrPDI)FeCl的数据进行比较,再次证明是一个高自旋亚铁离子,但在这种情况下,S(Fe) = 2的金属中心与一个以配体为中心的自由基(S(L) = 1/2)反铁磁耦合,这解释了实验观察到的S = 3/2基态。继续还原为((i)PrPDI)FeLₙ(L = N₂,n = 1,2;CO,n = 2;4 -(N,N - 二甲基氨基)吡啶,n = 1)导致形成一个双还原的双(亚氨基)吡啶双自由基,同时保留亚铁离子。N,N -(二甲基氨基)吡啶化合物的计算和实验数据都表明双(亚氨基)吡啶二价阴离子具有几乎等能量的单重态(S(L) = 0)和三重态(S(L) = 1)形式。在这两种自旋态下,铁都是中间自旋(S(Fe) = 1)的亚铁。实验上,由于铁与配体三重态的反铁磁耦合,该化合物具有自旋单重态基态(S = 0)。单重态双自由基激发态通过自旋 - 轨道耦合与配体的三重态基态混合,导致与温度无关的顺磁性,并解释了螯合物平面内质子在¹H NMR化学位移中观察到的大分散现象。总体而言,这些研究表明,用碱金属或硼氢化物试剂还原((i)PrPDI)FeCl₂会导致电子依次转移到配体的共轭π体系而不是金属中心。