Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
J Am Chem Soc. 2011 Nov 2;133(43):17353-69. doi: 10.1021/ja205736m. Epub 2011 Oct 10.
Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.
三种新的 N- 烷基取代双(亚氨基)吡啶铁亚胺配合物,((iPr)PDI)FeNR((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N ═ CMe)(2)C(5)H(3)N; R = 1-金刚烷((1)Ad),环辛基((Cy)Oct)和 2-金刚烷((2)Ad))是通过将合适的烷基叠氮化物添加到铁双(二氮)配合物((iPr)PDI)Fe(N(2))(2)中来合成的。对异构铁亚胺((iPr)PDI)FeN(1)Ad 和((iPr)PDI)FeN(2)Ad 的 SQUID 磁测量确定了自旋交叉行为,后者在实验可及的温度范围内具有更完全的自旋转变。对所有三种烷基取代的双(亚氨基)吡啶铁亚胺的 X 射线衍射确定了具有相对较短的 Fe-N(亚胺)键长和双(亚氨基)吡啶螯合物的两电子还原的基本平面化合物。零场和外加磁场 Mössbauer 光谱测量表明,在低温下具有抗磁性基态,并确定了与高共价分子一致的低同位素位移。对于((iPr)PDI)FeN(2)Ad,Mössbauer 光谱也支持自旋交叉行为,并允许提取 S = 0 到 S = 1 跃迁的热力学参数。X 射线吸收光谱和计算研究也进行了探索双(亚氨基)吡啶烷基取代亚胺的电子结构。具有低自旋铁中心(S = 1/2)的电子结构描述与亚胺基自由基(S(亚胺)= 1/2)和闭壳层,二阴离子双(亚氨基)吡啶螯合物(S(PDI)= 0)反铁磁耦合)有利于 S = 0 态。铁中心的自旋跃迁到中间自旋铁离子(S(Fe)= 3/2)解释了在较高温度下观察到的 S = 1 态。还基于计算和实验数据评估了其他可能性,并与双(亚氨基)吡啶铁 N-芳基亚胺对应物的电子结构进行了比较。