Buerke Michael, Schwertz Hansjörg, Längin Tina, Buerke Ute, Prondzinsky Roland, Platsch Herbert, Richert Joachim, Bomm Sabine, Schmidt Martin, Hillen Heinz, Lindemann Stephan, Blaschke Gottfried, Müller-Werdan Ursula, Werdan Karl
Department of Medicine III, Martin-Luther-University, Ernst-Grube-Str. 40, 06097 Halle, Germany.
Biochim Biophys Acta. 2006 Oct;1764(10):1536-45. doi: 10.1016/j.bbapap.2006.03.008. Epub 2006 May 15.
Myocardial ischemia-reperfusion injury can be related to complement activation with generation of chemotactic mediators, release of cytokines, leukocyte accumulation, and subsequent severe tissue injury. In this regard, activation of transcription factors (i.e., NFkappaB) and de novo protein synthesis or inflammatory protein degradation seems to play an important role. In the present study, we analyzed the cardiac protein expression following myocardial ischemia (60 min) and reperfusion (180 min) in a rabbit model utilizing two-dimensional electrophoresis and nanoHPLC/ESI-MS/MS for biochemical protein identification. To achieve cardioprotective effects, we used a novel highly selective small molecule C1s inhibitor administered 5 min prior to reperfusion. The reduction of myocardial injury was observed as diminished plasma creatine kinase activity in C1s-INH-248-treated animals (65.2+/-3 vs. 38.5+/-3 U/g protein after 3 h of reperfusion, P<0.05). With proteome analysis we were able to detect 509+/-21 protein spots on the gels of the 3 groups. A pattern of 480 spots with identical positions was found on every gel of myocardial tissue of sham animals, vehicle and C1s-INH-248-treated animals. We analyzed 11 spots, which were identified by mass spectrometry: Superoxide dismutase, alpha-crystallin-chain-B, mitochondrial stress protein, Mn SOD, ATP synthase A chain heart isoform, creatine kinase, and troponin T. All of these proteins were significantly decreased in the vehicle group when we compared to sham-treated animals. Treatment with C1s-INH-248 preserved levels of these proteins. Thus, blocking the classical complement pathway with a highly specific and potent synthetic inhibitor of the activated C1 complex archives cardio-protection by altering and preserving different anti-inflammatory and cytoprotective cascades.
心肌缺血再灌注损伤可能与补体激活有关,补体激活会产生趋化介质、释放细胞因子、导致白细胞聚集,进而造成严重的组织损伤。在这方面,转录因子(即核因子κB)的激活以及从头合成蛋白质或炎症蛋白降解似乎起着重要作用。在本研究中,我们利用二维电泳和纳升液相色谱/电喷雾电离串联质谱对蛋白质进行生化鉴定,分析了兔模型中心肌缺血(60分钟)和再灌注(180分钟)后的心脏蛋白质表达情况。为了实现心脏保护作用,我们在再灌注前5分钟使用了一种新型的高选择性小分子C1s抑制剂。在C1s-INH-248处理的动物中观察到心肌损伤减轻,表现为再灌注3小时后血浆肌酸激酶活性降低(65.2±3 vs. 38.5±3 U/g蛋白质,P<0.05)。通过蛋白质组分析,我们在三组的凝胶上检测到509±21个蛋白质斑点。在假手术动物、溶剂对照组和C1s-INH-248处理动物的心肌组织凝胶上,发现了480个位置相同的斑点模式。我们分析了11个通过质谱鉴定的斑点:超氧化物歧化酶、α-晶状体蛋白B链、线粒体应激蛋白、锰超氧化物歧化酶、ATP合酶A链心脏同工型、肌酸激酶和肌钙蛋白T。与假手术处理的动物相比,溶剂对照组中所有这些蛋白质均显著减少。用C1s-INH-248处理可维持这些蛋白质的水平。因此,用一种高度特异性和强效的活化C1复合物合成抑制剂阻断经典补体途径,可通过改变和维持不同的抗炎和细胞保护级联反应来实现心脏保护。