Suppr超能文献

Cardioprotective effects of a C1 esterase inhibitor in myocardial ischemia and reperfusion.

作者信息

Buerke M, Murohara T, Lefer A M

机构信息

Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pa. 19107.

出版信息

Circulation. 1995 Jan 15;91(2):393-402. doi: 10.1161/01.cir.91.2.393.

Abstract

BACKGROUND

Myocardial injury after ischemia and reperfusion can be attributed largely to the effects of polymorphonuclear leukocytes (PMN). The complement system plays an important role as a chemotactic agent, affecting adhesion molecule expression and neutrophil accumulation.

METHODS AND RESULTS

In the present study, the cardioprotective effects of C1 esterase inhibitor (C1 INH) were examined in a feline model of myocardial ischemia and reperfusion (90 minutes of ischemia followed by 270 minutes of reperfusion). C1 INH (15 mg/kg) administered 10 minutes before reperfusion significantly attenuated myocardial necrosis compared with vehicle (10 +/- 2% and 29 +/- 2% necrosis as a proportion of area at risk, respectively; P < .01). Myocardial preservation was also related to reduced plasma accumulation of creatine kinase activity. C1 INH treatment resulted in improved recovery of cardiac contractility and preservation of coronary vascular endothelial function, as assessed by relaxation in response to acetylcholine, compared with contractility and preservation of endothelial function in vehicle-treated animals (69 +/- 6% and 20 +/- 4% relaxation, respectively; P < .01). In addition, cardiac myeloperoxidase activity (an index of PMN accumulation) in the ischemic area was significantly reduced after C1 INH treatment. Furthermore, immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated deposition of the first component of the classic complement pathway, C1q, on cardiac myocytes and coronary vessels.

CONCLUSIONS

Blocking of the classic complement pathway by C1 INH appears to be an effective means of preserving ischemic myocardium from reperfusion injury. The mechanism of this cardioprotective effect appears to be inhibition of PMN-endothelium interaction; this inhibition leads to preservation of normal endothelial function, which results in reduced cardiac necrosis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验