Suppr超能文献

我们能谈谈吗?随机数字拨号调查在伤害预防研究中的重要性。

Can we talk? Importance of random-digit-dial surveys for injury prevention research.

作者信息

Simon Thomas R, Mercy James A, Barker Lawrence

机构信息

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Division of Violence Prevention, Atlanta, Georgia 30341, USA.

出版信息

Am J Prev Med. 2006 Nov;31(5):406-10. doi: 10.1016/j.amepre.2006.07.012. Epub 2006 Sep 26.

Abstract

Prevention research in public health requires quality data. In injury prevention research, "official" data sources, such as medical or law enforcement data, often do not possess the required depth or completeness. Self-reported data can fill this gap. Such data allow us to understand knowledge, attitudes, exposures, and behaviors associated with injury risk. Self-reported data are also needed to understand outcomes that are often missing from official sources, such as victimization by an intimate partner that is not reported because of concerns about legal consequences and less severe injuries from suicide attempts that go untreated. Data on risk and protective factors and specific types of violence exposures can often only be obtained by directly asking those affected. In addition, "official" data sources are rarely representative. Random-digit-dialing (RDD) surveys are a method of obtaining representative self-reported data. The RDD approach is relatively cost effective, handles non-English-speaking households with relative ease, and possesses a well-developed theory for constructing sample weights. However, there are significant challenges to using RDD surveys. These include declining participation rates; possible self-selection bias, since potential respondents can choose to opt out of the survey; and, with sensitive topics such as intimate partner violence, the need to anticipate potential risks for participants. This theme issue provides suggestions for how we can improve the design and implementation of RDD surveys in a manner that is both practical and ethical.

摘要

公共卫生领域的预防研究需要高质量的数据。在伤害预防研究中,诸如医疗或执法数据等“官方”数据来源往往缺乏所需的深度或完整性。自我报告的数据可以填补这一空白。此类数据使我们能够了解与伤害风险相关的知识、态度、暴露情况和行为。官方数据来源常常缺失的结果,例如因担心法律后果而未报告的亲密伴侣暴力受害情况以及未得到治疗的自杀未遂造成的较轻伤害,也需要通过自我报告的数据来了解。关于风险和保护因素以及特定类型暴力暴露的数据,通常只能通过直接询问受影响者来获取。此外,“官方”数据来源很少具有代表性。随机数字拨号(RDD)调查是获取具有代表性的自我报告数据的一种方法。RDD方法相对具有成本效益,相对轻松地处理非英语家庭,并且拥有一套完善的构建样本权重的理论。然而,使用RDD调查存在重大挑战。这些挑战包括参与率下降;可能存在自我选择偏差,因为潜在受访者可以选择不参与调查;而且,对于诸如亲密伴侣暴力等敏感话题,需要预见到参与者可能面临的潜在风险。本专题文章提供了一些建议,说明我们如何能够以既实际又符合道德规范的方式改进RDD调查的设计与实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验