Suppr超能文献

Application of the fast-Fourier-transform-based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage.

作者信息

Gombköto Balázs, Koppa Pál, Maák Pál, Lorincz Emoke

机构信息

Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, Budapest 1111, Hungary.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2006 Nov;23(11):2954-60. doi: 10.1364/josaa.23.002954.

Abstract

Numerical simulation of diffraction on thick holographic gratings in shift-multiplexed optical data storage application is presented. The grating is generated by the interference of a spherical reference wave and a plane signal wave corresponding to a single pixel of the input data page. To describe diffraction on this weak-index-modulated grating, we use the volume integral equation in the first Born approximation. This description yields a convolution integral that can be efficiently evaluated by a 3D fast Fourier transform (FFT) technique. For a 51.2 microm recording layer thickness, a serial-divided single personal computer code was built based on parallel FFT coding principles. Diffracted electric field and Poynting-vector distributions are calculated for probe beams spatially shifted with respect to the reference beams. The shift selectivity curves show significant differences from previous analytical calculations based on paraxial propagation and infinite gratings, as they have monotonic decrease in all three directions instead of sinclike functions with Bragg nulls. With the chosen numerical aperture of 0.6 and linear polarization, both the scalar and vector calculations provided similar results within 5%.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验