McCabe D C, Rajakumar B, Marshall P, Smith I W M, Ravishankara A R
NOAA Aeronomy Laboratory, 325 Broadway R/AL2, Boulder, Colorado 80305, USA.
Phys Chem Chem Phys. 2006 Oct 21;8(39):4563-74. doi: 10.1039/b609330b. Epub 2006 Sep 7.
We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.
我们报告了在251至390 K温度范围内,H₂O和D₂O使OH(v = 1)和OD(v = 1)弛豫的速率系数与温度的函数关系。所有这四个速率系数均呈现出对温度的负相关性。以阿伦尼乌斯形式表示,弛豫的速率系数(单位为10⁻¹² cm³ 分子⁻¹ s⁻¹)可表示为:对于263至390 K之间的OH(v = 1)+H₂O:k = (2.4 ± 0.9) exp((460 ± 115)/T);对于256至371 K之间的OH(v = 1)+D₂O:k = (0.49 ± 0.16) exp((610 ± 90)/T);对于251至371 K之间的OD(v = 1)+H₂O:k = (0.92 ± 0.16) exp((485 ± 48)/T);对于253至366 K之间的OD(v = 1)+D₂O:k = (2.57 ± 0.09) exp((342 ± 10)/T)。还报告了在(297 ± 1 K)时,D₂O使OH(v = 2)弛豫以及H₂O和D₂O使OD(v = 2)弛豫的速率系数。根据一种涉及形成氢键复合物的机制对结果进行了讨论,在该机制中,分子内振动能量重新分布的速率与重新解离为处于其原始振动状态的初始碰撞伙伴的速率相当。已对H₂O - HO系统进行了新的从头算计算,这些计算尤其得出了所有四种复合物:H₂O - HO、D₂O - HO、H₂O - DO和D₂O - DO的振动频率。然后采用由于特罗伊(J. Troe,《化学物理杂志》,1977年,66卷,4758页)提出的一种形式体系,利用这些数据来估计复合物中从OH(OD)振动到其他模式的分子内能量转移速率,以便解释测量到的弛豫速率——假设弛豫是通过氢键复合物进行的。