Suppr超能文献

基因排序在微阵列样本分类中的意义。

Significance of gene ranking for classification of microarray samples.

作者信息

Zhang Chaolin, Lu Xuesong, Zhang Xuegong

机构信息

Cold Spring Harbor Laboratory and the Department of Biomedical Engineering, State University of New York at Stony Brook, NY 11794, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2006 Jul-Sep;3(3):312-20. doi: 10.1109/TCBB.2006.42.

Abstract

Many methods for classification and gene selection with microarray data have been developed. These methods usually give a ranking of genes. Evaluating the statistical significance of the gene ranking is important for understanding the results and for further biological investigations, but this question has not been well addressed for machine learning methods in existing works. Here, we address this problem by formulating it in the framework of hypothesis testing and propose a solution based on resampling. The proposed r-test methods convert gene ranking results into position p-values to evaluate the significance of genes. The methods are tested on three real microarray data sets and three simulation data sets with support vector machines as the method of classification and gene selection. The obtained position p-values help to determine the number of genes to be selected and enable scientists to analyze selection results by sophisticated multivariate methods under the same statistical inference paradigm as for simple hypothesis testing methods.

摘要

已经开发出了许多用于微阵列数据分类和基因选择的方法。这些方法通常会给出基因的排名。评估基因排名的统计显著性对于理解结果和进一步的生物学研究很重要,但现有工作中对于机器学习方法,这个问题尚未得到很好的解决。在此,我们通过在假设检验框架中对其进行公式化来解决这个问题,并提出一种基于重采样的解决方案。所提出的r检验方法将基因排名结果转换为位置p值,以评估基因的显著性。使用支持向量机作为分类和基因选择方法,在三个真实微阵列数据集和三个模拟数据集上对这些方法进行了测试。获得的位置p值有助于确定要选择的基因数量,并使科学家能够在与简单假设检验方法相同的统计推断范式下,通过复杂的多变量方法分析选择结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验