文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于口服给药的生物粘附性甘露糖化纳米颗粒。

Bioadhesive mannosylated nanoparticles for oral drug delivery.

作者信息

Salman Hesham H, Gamazo Carlos, Campanero Miguel A, Irache Juan M

机构信息

Centro Galénico, University of Navarra, Ap. 177, 31080-Pamplona, Spain.

出版信息

J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):3203-9. doi: 10.1166/jnn.2006.445.


DOI:10.1166/jnn.2006.445
PMID:17048537
Abstract

The aim of this work was to design mannosylated Gantrez AN nanoparticles (M-NP) and to describe their gut bioadhesive properties in order to develop a promising carrier for future applications in oral drug delivery. For that purpose, the process of the nanoparticles coating with mannosamine was optimized by the incubation of Gantrez AN nanoparticles with different volumes of mannosamine aqueous solutions at different times. Then, the nanoparticles were characterized by measuring the size, zeta potential, mannosamine content, and concanavalin A (Con A) binding. Furthermore, in vivo quantitative bioadhesion study and kinetic analysis of the bioadhesion curves were performed after oral administration to rats of fluorescently labelled nanoparticles. The selected mannosylated nanoparticles (M-NP1 and M-NP10) were of homogenous sizes (about 300 and 200 nm), negatively charged and successfully coated with 36 and 18 microg mannosamine/mg NP, respectively. In vitro agglutination assay using Con A confirmed the successful coating of nanoparticles with mannosamine. The gut distribution profile of M-NP1 indicated a stronger bioadhesive capacity than M-NP10 and non-mannosylated ones, 1 h post-administration. Interestingly, M-NP1 showed an important ileum tropism where around 20% of the given dose remained adhered. Besides, the kinetic parameters of the bioadhesion profile of M-NP1 indicated their higher bioadhesive capacity with Q(max) and AUC(adh) about 2-times higher than control ones. Moreover, fluorescence microscopy corroborated the stronger interactions of M-NP1 with the normal mucosa and demonstrated a strong uptake of these carriers by Peyer's patches. In conclusion, we propose that mannosylated nanoparticles could be a promising non-live vector for oral delivery strategies.

摘要

本研究旨在设计甘露糖基化的甘特雷斯AN纳米颗粒(M-NP),并描述其肠道生物黏附特性,以便开发一种有望用于未来口服药物递送的载体。为此,通过在不同时间将甘特雷斯AN纳米颗粒与不同体积的甘露糖胺水溶液孵育,优化了纳米颗粒用甘露糖胺包衣的过程。然后,通过测量粒径、zeta电位、甘露糖胺含量和伴刀豆球蛋白A(Con A)结合来表征纳米颗粒。此外,在给大鼠口服荧光标记的纳米颗粒后,进行了体内定量生物黏附研究和生物黏附曲线的动力学分析。所选的甘露糖基化纳米颗粒(M-NP1和M-NP10)粒径均匀(分别约为300和200 nm),带负电荷,且分别成功包被了36和18 μg甘露糖胺/mg纳米颗粒。使用Con A的体外凝集试验证实了纳米颗粒成功地被甘露糖胺包被。给药1小时后,M-NP1的肠道分布情况表明其生物黏附能力比M-NP10和未甘露糖基化的纳米颗粒更强。有趣的是,M-NP1表现出重要的回肠嗜性,约20%的给药剂量仍黏附在那里。此外,M-NP1生物黏附曲线的动力学参数表明其具有更高的生物黏附能力,Q(max)和AUC(adh)比对照纳米颗粒高约2倍。而且,荧光显微镜证实了M-NP1与正常黏膜之间有更强的相互作用,并显示这些载体被派伊尔结大量摄取。总之,我们认为甘露糖基化纳米颗粒可能是口服递送策略中一种有前景的非活性载体。

相似文献

[1]
Bioadhesive mannosylated nanoparticles for oral drug delivery.

J Nanosci Nanotechnol. 2006

[2]
Salmonella-like bioadhesive nanoparticles.

J Control Release. 2005-8-18

[3]
Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B(12)-Gantrez nanoparticles.

Pharm Res. 2008-12

[4]
Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles.

Int J Pharm. 2002-8-21

[5]
Bioadhesive properties of Gantrez nanoparticles.

Molecules. 2005-1-31

[6]
Development of mannosylated liposomes for bioadhesive oral drug delivery via M cells of Peyer's patches.

Drug Deliv. 2009-7

[7]
Development of a novel vaccine delivery system based on Gantrez nanoparticles.

J Nanosci Nanotechnol. 2006

[8]
Comparative evaluation of polymeric nanoparticles of rifampicin comprising Gantrez and poly(ethylene sebacate) on pharmacokinetics, biodistribution and lung uptake following oral administration.

J Biomed Nanotechnol. 2014-4

[9]
Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery.

Int J Pharm. 2017-1-30

[10]
Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles.

Vaccine. 2007-11-23

引用本文的文献

[1]
Oral Immunogenicity of Enterotoxigenic Outer Membrane Vesicles Encapsulated into Zein Nanoparticles Coated with a Gantrez AN-Mannosamine Polymer Conjugate.

Pharmaceutics. 2022-1-4

[2]
Oral Immunogenicity in Mice and Sows of Enterotoxigenic Escherichia Coli Outer-Membrane Vesicles Incorporated into Zein-Based Nanoparticles.

Vaccines (Basel). 2019-12-31

[3]
Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells.

Int J Nanomedicine. 2016-6-3

[4]
Freeze-dried targeted mannosylated selenium-loaded nanoliposomes: development and evaluation.

AAPS PharmSciTech. 2013-9

[5]
Oral insulin delivery: how far are we?

J Diabetes Sci Technol. 2013-3-1

[6]
Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation.

Clin Vaccine Immunol. 2010-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索