文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

甘胆酸纳米颗粒的生物黏附特性。

Bioadhesive properties of Gantrez nanoparticles.

作者信息

Irache Juan M, Huici María, Konecny Monica, Espuelas Socorro, Campanero Miguel Angel, Arbos Pau

机构信息

Centro Galénico, Universidad de Navarra, 31080 - Pamplona (Spain).

出版信息

Molecules. 2005 Jan 31;10(1):126-45. doi: 10.3390/10010126.


DOI:10.3390/10010126
PMID:18007282
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6147552/
Abstract

Bioadhesive nanoparticles have been proposed as carriers for the oral delivery of poorly available drugs and facilitate the use of this route. This work summarises some experiments describing the bioadhesive potential of Gantrez nanoparticles fluorescently labeled with rhodamine B isothiocyanate. The adhesive potential of Gantrez was found to be stronger when folded as nanoparticles than in the solubilised form. Conventional nanoparticles displayed a tropism for the upper areas of the gastrointestinal tract, with a maximum of adhesion 30 min post-administration and a decrease in the adhered fraction along the time depending on the given dose. The cross-linkage of nanoparticles with increasing amounts of 1,3-diaminopropane stabilised the resulting carriers and prolonged their half-life in an aqueous environment; although, the adhesive capacity of nanoparticles, the intensity and the relative duration of the adhesive interactions within the gut as a function of the cross-linking degree. Finally, nanoparticles were coated with either gelatin or albumin. In the first case, the presence of gelatin dramatically decreased the initial capacity of these carriers to interact with the gut mucosa and the intensity of these phenomenons. In the latter, bovine serum albumin coated nanoparticles (BSA-NP) showed an important tropism for the stomach mucosa without further significant distribution to other parts of the gut mucosa.

摘要

生物黏附性纳米颗粒已被提议作为口服递送难吸收药物的载体,并促进这种给药途径的应用。这项工作总结了一些实验,这些实验描述了用异硫氰酸罗丹明B荧光标记的甘泰兹纳米颗粒的生物黏附潜力。发现甘泰兹折叠成纳米颗粒时的黏附潜力比溶解形式时更强。传统纳米颗粒对胃肠道上部区域表现出嗜性,给药后30分钟时黏附量最大,并且随着时间推移,黏附部分会根据给定剂量而减少。纳米颗粒与越来越多的1,3 -二氨基丙烷交联可稳定所得载体,并延长其在水性环境中的半衰期;尽管如此,纳米颗粒的黏附能力、肠道内黏附相互作用的强度和相对持续时间是交联度的函数。最后,纳米颗粒用明胶或白蛋白包被。在第一种情况下,明胶的存在显著降低了这些载体与肠黏膜相互作用的初始能力以及这些现象的强度。在后一种情况下,牛血清白蛋白包被的纳米颗粒(BSA - NP)对胃黏膜表现出重要的嗜性,而不会进一步大量分布到肠黏膜的其他部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/90a596ef8d44/molecules-10-00126-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/ecd5afeb19f1/molecules-10-00126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/aaf06f78030b/molecules-10-00126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/ea85fef677d0/molecules-10-00126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/aaa688c06eaf/molecules-10-00126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/a30da37b3574/molecules-10-00126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/a71ff4c5111d/molecules-10-00126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/87c4f6e7d80c/molecules-10-00126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/0194ff2145ed/molecules-10-00126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/8b17e4fcad60/molecules-10-00126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/2402b3b63482/molecules-10-00126-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/90a596ef8d44/molecules-10-00126-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/ecd5afeb19f1/molecules-10-00126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/aaf06f78030b/molecules-10-00126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/ea85fef677d0/molecules-10-00126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/aaa688c06eaf/molecules-10-00126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/a30da37b3574/molecules-10-00126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/a71ff4c5111d/molecules-10-00126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/87c4f6e7d80c/molecules-10-00126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/0194ff2145ed/molecules-10-00126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/8b17e4fcad60/molecules-10-00126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/2402b3b63482/molecules-10-00126-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbe6/6147552/90a596ef8d44/molecules-10-00126-g011.jpg

相似文献

[1]
Bioadhesive properties of Gantrez nanoparticles.

Molecules. 2005-1-31

[2]
Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles.

Int J Pharm. 2002-8-21

[3]
Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties.

J Control Release. 2003-4-14

[4]
Bioadhesive mannosylated nanoparticles for oral drug delivery.

J Nanosci Nanotechnol. 2006

[5]
Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B(12)-Gantrez nanoparticles.

Pharm Res. 2008-12

[6]
Salmonella-like bioadhesive nanoparticles.

J Control Release. 2005-8-18

[7]
Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery.

Int J Pharm. 2017-1-30

[8]
Ionic complexation as a non-covalent approach for the design of folate anchored rifampicin Gantrez nanoparticles.

J Biomed Nanotechnol. 2013-5

[9]
Complexation between PVP and Gantrez polymer and its effect on release and bioadhesive properties of the composite PVP/Gantrez films.

Pharm Dev Technol. 2004-11

[10]
Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles.

Int J Pharm. 2009-8-25

引用本文的文献

[1]
Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment.

Int J Pharm X. 2022-12-6

[2]
Effects of desensitizing dentifrices on dentin tubule occlusion and resistance to erosive challenges.

BMC Oral Health. 2021-11-30

[3]
Formation of Multicolor Nanogels Based on Cationic Polyfluorenes and Poly(methyl vinyl ether-alt-maleic monoethyl ester): Potential Use as pH-Responsive Fluorescent Drug Carriers.

Int J Mol Sci. 2021-9-4

[4]
Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics.

Nanomaterials (Basel). 2020-3-8

[5]
Dissolving Microneedles for Intradermal Vaccination against Shigellosis.

Vaccines (Basel). 2019-10-24

[6]
Immunogenicity of peanut proteins containing poly(anhydride) nanoparticles.

Clin Vaccine Immunol. 2014-8

[7]
Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy.

Int J Nanomedicine. 2014-3-7

[8]
Chitosan-alginate microcapsules of amoxicillin for gastric stability and mucoadhesion.

J Adv Pharm Technol Res. 2012-1

[9]
Modification of microneedles using inkjet printing.

AIP Adv. 2011-6

本文引用的文献

[1]
Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines.

J Control Release. 2004-4-16

[2]
Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy.

Eur J Pharm Biopharm. 2004-1

[3]
Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties.

J Control Release. 2003-4-14

[4]
Gantrez AN as a new polymer for the preparation of ligand-nanoparticle conjugates.

J Control Release. 2002-10-30

[5]
Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles.

Int J Pharm. 2002-8-21

[6]
Lectin-mediated drug delivery: binding and uptake of BSA-WGA conjugates using the Caco-2 model.

Int J Pharm. 2002-4-26

[7]
Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics.

Pharm Res. 2001-11

[8]
Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas.

Adv Drug Deliv Rev. 2001-10-1

[9]
Targeting polymerised liposome vaccine carriers to intestinal M cells.

Vaccine. 2001-10-12

[10]
Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine.

Drug Dev Ind Pharm. 2001-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索