Elliott John T, Woodward John T, Umarji Anita, Mei Ying, Tona Alessandro
Biochemical Science Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Biomaterials. 2007 Feb;28(4):576-85. doi: 10.1016/j.biomaterials.2006.09.023. Epub 2006 Oct 17.
In this study, we used well-defined, homogeneous, gradient and patterned substrates to explore the effects of surface chemistry on the supramolecular structure of adsorbed type I collagen. Type I collagen (320microg/mL) was allowed to adsorb onto self-assembled CH(3)-, COOH-, NH(2)- and OH-terminated alkylthiolate monolayers at 37 degrees C. Atomic force microscopy, ellipsometry and phase microscopy indicated that large supramolecular collagen fibril structures (approximately 200nm in diameter, several microns long) assembled only at the hydrophobic CH(3)-terminated surfaces. By varying the surface energy using a mixture of OH- and CH(3)-terminated thiols during monolayer formation, we found that large fibril assembly occurred at surfaces with a water contact angle above 83 degrees , but not on surfaces with a water contact angle below 63 degrees . Examining a surface with a linear hydrophobicity gradient revealed that the assembly of large collagen fibrils requires a hydrophobic surface with a water contact angle of at least 78 degrees . Collagen fibril density increased over a narrow range of surface energy and reached near-maximum density on surfaces with a water contact angle of 87 degrees . These studies confirm that the supramolecular structure of adsorbed collagen is highly dependent on the underlying substrate surface chemistry. We can take advantage of this dependency to pattern areas of fibrillar and non-fibrillar collagen on a single surface. Morphology studies with vascular smooth muscle cells indicated that only collagen films formed on hydrophobic substrates mimicked the biological properties of fibrillar collagen gels.
在本研究中,我们使用定义明确、均匀、具有梯度和图案的基底来探究表面化学对吸附的I型胶原超分子结构的影响。将I型胶原(320μg/mL)在37℃下使其吸附到自组装的甲基(CH₃-)、羧基(COOH-)、氨基(NH₂-)和羟基(OH-)封端的烷基硫醇盐单层上。原子力显微镜、椭圆偏振法和相显微镜表明,大型超分子胶原纤维结构(直径约200nm,长数微米)仅在疏水的甲基封端表面组装。通过在单层形成过程中使用羟基和甲基封端硫醇的混合物来改变表面能,我们发现当水接触角高于83°的表面上会发生大型纤维组装,而在水接触角低于63°的表面上则不会。研究具有线性疏水性梯度的表面发现,大型胶原纤维的组装需要水接触角至少为78°的疏水表面。胶原纤维密度在狭窄的表面能范围内增加,并在水接触角为87°的表面上达到接近最大密度。这些研究证实,吸附的胶原的超分子结构高度依赖于底层基底的表面化学。我们可以利用这种依赖性在单个表面上对纤维状和非纤维状胶原区域进行图案化。对血管平滑肌细胞的形态学研究表明,只有在疏水基底上形成的胶原膜才模拟纤维状胶原凝胶的生物学特性。