Li Tong, Shi Chuanmei, Jin Fei, Yang Fan, Gu Long, Wang Ting, Dong Wei, Feng Zhang-Qi
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Institute of Rail Transit, Tongji University, Shanghai 201804, P. R. China.
Sci Adv. 2021 Sep 24;7(39):eabh2350. doi: 10.1126/sciadv.abh2350.
The biophysical characteristics of the extracellular matrix (ECM), such as a three-dimensional (3D) network and bioelectricity, have a profound influence on cell development, migration, function expression, etc. Here, inspired by these biophysical cues of ECM, we develop an electromechanical coupling bio-nanogenerator (bio-NG) composed of highly discrete piezoelectric fibers. It can generate surface piezopotential up to millivolts by cell inherent force and thus provide in situ electrical stimulation for the living cells. Besides, the unique 3D space in the bio-NGs provides an ECM-like growth microenvironment for cells. As a result, our bio-NGs effectively promote cell viability and development and, more importantly, maintain its specific functional expression. These advanced in vitro bio-NGs are expected to fill the gap between the inaccurate 2D systems and the expensive and time-consuming animal models, mimicking the complexity of the ECM and the physiological relevance of an in vivo biological system.
细胞外基质(ECM)的生物物理特性,如三维(3D)网络和生物电,对细胞发育、迁移、功能表达等有着深远影响。在此,受ECM这些生物物理线索的启发,我们开发了一种由高度离散的压电纤维组成的机电耦合生物纳米发电机(生物-NG)。它能通过细胞固有力产生高达毫伏级的表面压电势,从而为活细胞提供原位电刺激。此外,生物-NG中独特的3D空间为细胞提供了类似ECM的生长微环境。因此,我们的生物-NG有效地促进了细胞活力和发育,更重要的是,维持了其特定功能表达。这些先进的体外生物-NG有望填补不准确的二维系统与昂贵且耗时的动物模型之间的空白,模拟ECM的复杂性和体内生物系统的生理相关性。