Suppr超能文献

一种用于数字乳腺X线摄影中微钙化检测与分类的遗传算法设计。

A genetic algorithm design for microcalcification detection and classification in digital mammograms.

作者信息

Jiang J, Yao B, Wason A M

机构信息

University of Bradford, School of Informatics, Richmond Road, Bradford BD7 1DP, United Kingdom.

出版信息

Comput Med Imaging Graph. 2007 Jan;31(1):49-61. doi: 10.1016/j.compmedimag.2006.09.011. Epub 2006 Oct 17.

Abstract

In this paper, we propose a genetic algorithm design to automatically classify and detect micocalcification clusters in digital mammograms. The proposed GA technique is characterised by transforming input images into a feature domain, where each pixel is represented by its mean and standard deviation inside a surrounding window of size 9 x 9 pixel. In the feature domain, chromosomes are constructed to populate the initial generation and further features are extracted to enable the proposed GA to search for optimised classification and detection of microcalcification clusters via regions of 128 x 128 pixels. Extensive experiments show that the proposed GA design is able to achieve high performances in microcalcification classification and detection, which are measured by ROC curves, sensitivity against specificity, areas under ROC curves and benchmarked by existing representative techniques.

摘要

在本文中,我们提出了一种遗传算法设计,用于自动对数字乳腺钼靶图像中的微钙化簇进行分类和检测。所提出的遗传算法技术的特点是将输入图像转换到特征域,在该特征域中,每个像素由其在大小为9×9像素的周围窗口内的均值和标准差表示。在特征域中,构建染色体以填充初始种群,并提取进一步的特征,以使所提出的遗传算法能够通过128×128像素的区域搜索微钙化簇的优化分类和检测。大量实验表明,所提出的遗传算法设计能够在微钙化分类和检测中实现高性能,这些性能通过ROC曲线、敏感性与特异性、ROC曲线下面积来衡量,并以现有的代表性技术为基准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验