Suppr超能文献

利用YOLO-v8提升乳腺钼靶摄影中微钙化的检测性能及临床意义

Enhancing Microcalcification Detection in Mammography with YOLO-v8 Performance and Clinical Implications.

作者信息

Shia Wei-Chung, Ku Tien-Hsiung

机构信息

Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital, Changhua 500, Taiwan.

School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuqing 350300, China.

出版信息

Diagnostics (Basel). 2024 Dec 20;14(24):2875. doi: 10.3390/diagnostics14242875.

Abstract

: Microcalcifications in the breast are often an early warning sign of breast cancer, and their accurate detection is crucial for the early discovery and management of the disease. In recent years, deep learning technology, particularly models based on object detection, has significantly improved the ability to detect microcalcifications. This study aims to use the advanced YOLO-v8 object detection algorithm to identify breast microcalcifications and explore its advantages in terms of performance and clinical application. : This study collected mammograms from 7615 female participants, with a dataset including 10,323 breast images containing microcalcifications. We used the YOLO-v8 model for microcalcification detection and trained and validated the model using five-fold cross-validation. The model's performance was evaluated through metrics such as accuracy, recall, F1 score, mAP50, and mAP50-95. Additionally, this study explored the potential applications of this technology in clinical practice. : The YOLO-v8 model achieved an mAP50 of 0.921, an mAP50-95 of 0.709, an F1 score of 0.82, a detection accuracy of 0.842, and a recall rate of 0.796 in breast microcalcification detection. Compared to previous similar deep learning object detection techniques like Mask R-CNN, YOLO-v8 has shown improvements in both speed and accuracy. : YOLO-v8 outperforms traditional detection methods in detecting breast microcalcifications. Its multi-scale detection capability significantly enhances both speed and accuracy, making it more clinically practical for large-scale screenings. Future research should further explore the model's potential in benign and malignant classification to promote its application in clinical settings, assisting radiologists in diagnosing breast cancer more efficiently.

摘要

乳腺微钙化通常是乳腺癌的早期预警信号,其准确检测对于该疾病的早期发现和管理至关重要。近年来,深度学习技术,特别是基于目标检测的模型,显著提高了微钙化的检测能力。本研究旨在使用先进的YOLO-v8目标检测算法来识别乳腺微钙化,并探讨其在性能和临床应用方面的优势。

本研究收集了7615名女性参与者的乳房X光片,数据集包括10323张含有微钙化的乳房图像。我们使用YOLO-v8模型进行微钙化检测,并采用五折交叉验证对模型进行训练和验证。通过准确率、召回率、F1分数、mAP50和mAP50-95等指标评估模型的性能。此外,本研究还探讨了该技术在临床实践中的潜在应用。

YOLO-v8模型在乳腺微钙化检测中实现了mAP50为0.921、mAP50-95为0.709、F1分数为0.82、检测准确率为0.842、召回率为0.796。与之前类似的深度学习目标检测技术如Mask R-CNN相比,YOLO-v8在速度和准确性方面都有提升。

YOLO-v8在检测乳腺微钙化方面优于传统检测方法。其多尺度检测能力显著提高了速度和准确性,使其在大规模筛查中更具临床实用性。未来的研究应进一步探索该模型在良性和恶性分类方面的潜力,以促进其在临床环境中的应用,协助放射科医生更高效地诊断乳腺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8137/11675152/dbcbe3365f9d/diagnostics-14-02875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验